AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.919 | 0.349 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.711 |
Model: | OLS | Adj. R-squared: | 0.666 |
Method: | Least Squares | F-statistic: | 15.62 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.31e-05 |
Time: | 04:02:34 | Log-Likelihood: | -98.810 |
No. Observations: | 23 | AIC: | 205.6 |
Df Residuals: | 19 | BIC: | 210.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.8269 | 94.932 | 0.714 | 0.484 | -130.869 266.523 |
C(dose)[T.1] | 430.5903 | 215.382 | 1.999 | 0.060 | -20.208 881.389 |
expression | -1.9615 | 13.649 | -0.144 | 0.887 | -30.529 26.606 |
expression:C(dose)[T.1] | -55.3250 | 31.439 | -1.760 | 0.095 | -121.128 10.478 |
Omnibus: | 0.432 | Durbin-Watson: | 1.469 |
Prob(Omnibus): | 0.806 | Jarque-Bera (JB): | 0.191 |
Skew: | 0.215 | Prob(JB): | 0.909 |
Kurtosis: | 2.882 | Cond. No. | 429. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.631 |
Method: | Least Squares | F-statistic: | 19.80 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.81e-05 |
Time: | 04:02:34 | Log-Likelihood: | -100.55 |
No. Observations: | 23 | AIC: | 207.1 |
Df Residuals: | 20 | BIC: | 210.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 140.2259 | 89.927 | 1.559 | 0.135 | -47.359 327.811 |
C(dose)[T.1] | 51.8525 | 8.714 | 5.951 | 0.000 | 33.676 70.029 |
expression | -12.3892 | 12.924 | -0.959 | 0.349 | -39.348 14.570 |
Omnibus: | 0.512 | Durbin-Watson: | 1.978 |
Prob(Omnibus): | 0.774 | Jarque-Bera (JB): | 0.584 |
Skew: | -0.042 | Prob(JB): | 0.747 |
Kurtosis: | 2.224 | Cond. No. | 148. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:02:34 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.070 |
Model: | OLS | Adj. R-squared: | 0.026 |
Method: | Least Squares | F-statistic: | 1.591 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.221 |
Time: | 04:02:34 | Log-Likelihood: | -112.26 |
No. Observations: | 23 | AIC: | 228.5 |
Df Residuals: | 21 | BIC: | 230.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 259.1455 | 142.422 | 1.820 | 0.083 | -37.037 555.328 |
expression | -26.0583 | 20.659 | -1.261 | 0.221 | -69.022 16.905 |
Omnibus: | 2.787 | Durbin-Watson: | 2.617 |
Prob(Omnibus): | 0.248 | Jarque-Bera (JB): | 1.241 |
Skew: | 0.037 | Prob(JB): | 0.538 |
Kurtosis: | 1.864 | Cond. No. | 144. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.641 | 0.130 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.569 |
Model: | OLS | Adj. R-squared: | 0.451 |
Method: | Least Squares | F-statistic: | 4.835 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0220 |
Time: | 04:02:34 | Log-Likelihood: | -68.992 |
No. Observations: | 15 | AIC: | 146.0 |
Df Residuals: | 11 | BIC: | 148.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 272.0636 | 226.080 | 1.203 | 0.254 | -225.536 769.663 |
C(dose)[T.1] | 359.2366 | 411.755 | 0.872 | 0.402 | -547.030 1265.503 |
expression | -28.4814 | 31.431 | -0.906 | 0.384 | -97.662 40.699 |
expression:C(dose)[T.1] | -40.2758 | 55.676 | -0.723 | 0.485 | -162.818 82.266 |
Omnibus: | 0.064 | Durbin-Watson: | 0.971 |
Prob(Omnibus): | 0.969 | Jarque-Bera (JB): | 0.269 |
Skew: | 0.100 | Prob(JB): | 0.874 |
Kurtosis: | 2.375 | Cond. No. | 525. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.548 |
Model: | OLS | Adj. R-squared: | 0.473 |
Method: | Least Squares | F-statistic: | 7.281 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00850 |
Time: | 04:02:34 | Log-Likelihood: | -69.341 |
No. Observations: | 15 | AIC: | 144.7 |
Df Residuals: | 12 | BIC: | 146.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 364.2902 | 182.958 | 1.991 | 0.070 | -34.341 762.921 |
C(dose)[T.1] | 61.6137 | 16.169 | 3.811 | 0.002 | 26.385 96.842 |
expression | -41.3176 | 25.423 | -1.625 | 0.130 | -96.710 14.075 |
Omnibus: | 0.388 | Durbin-Watson: | 1.034 |
Prob(Omnibus): | 0.824 | Jarque-Bera (JB): | 0.493 |
Skew: | -0.041 | Prob(JB): | 0.781 |
Kurtosis: | 2.115 | Cond. No. | 193. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:02:34 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.075 |
Method: | Least Squares | F-statistic: | 0.01945 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.891 |
Time: | 04:02:34 | Log-Likelihood: | -75.289 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 60.8832 | 235.281 | 0.259 | 0.800 | -447.411 569.178 |
expression | 4.4633 | 32.002 | 0.139 | 0.891 | -64.674 73.600 |
Omnibus: | 0.363 | Durbin-Watson: | 1.580 |
Prob(Omnibus): | 0.834 | Jarque-Bera (JB): | 0.481 |
Skew: | -0.010 | Prob(JB): | 0.786 |
Kurtosis: | 2.123 | Cond. No. | 174. |