AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.003 | 0.960 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.602 |
Method: | Least Squares | F-statistic: | 12.11 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000117 |
Time: | 05:18:36 | Log-Likelihood: | -100.82 |
No. Observations: | 23 | AIC: | 209.6 |
Df Residuals: | 19 | BIC: | 214.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 18.5849 | 109.941 | 0.169 | 0.868 | -211.525 248.695 |
C(dose)[T.1] | 209.0827 | 242.931 | 0.861 | 0.400 | -299.377 717.542 |
expression | 4.7803 | 14.730 | 0.325 | 0.749 | -26.049 35.610 |
expression:C(dose)[T.1] | -21.6258 | 33.750 | -0.641 | 0.529 | -92.265 49.014 |
Omnibus: | 0.133 | Durbin-Watson: | 1.874 |
Prob(Omnibus): | 0.935 | Jarque-Bera (JB): | 0.351 |
Skew: | 0.063 | Prob(JB): | 0.839 |
Kurtosis: | 2.408 | Cond. No. | 468. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 05:18:36 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 49.2824 | 97.485 | 0.506 | 0.619 | -154.069 252.633 |
C(dose)[T.1] | 53.5496 | 9.721 | 5.508 | 0.000 | 33.271 73.828 |
expression | 0.6610 | 13.056 | 0.051 | 0.960 | -26.574 27.896 |
Omnibus: | 0.288 | Durbin-Watson: | 1.895 |
Prob(Omnibus): | 0.866 | Jarque-Bera (JB): | 0.465 |
Skew: | 0.062 | Prob(JB): | 0.793 |
Kurtosis: | 2.315 | Cond. No. | 166. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:18:36 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.117 |
Model: | OLS | Adj. R-squared: | 0.075 |
Method: | Least Squares | F-statistic: | 2.776 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.111 |
Time: | 05:18:36 | Log-Likelihood: | -111.68 |
No. Observations: | 23 | AIC: | 227.4 |
Df Residuals: | 21 | BIC: | 229.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 301.4467 | 133.261 | 2.262 | 0.034 | 24.316 578.577 |
expression | -30.3802 | 18.235 | -1.666 | 0.111 | -68.302 7.542 |
Omnibus: | 2.329 | Durbin-Watson: | 2.407 |
Prob(Omnibus): | 0.312 | Jarque-Bera (JB): | 1.151 |
Skew: | 0.063 | Prob(JB): | 0.563 |
Kurtosis: | 1.912 | Cond. No. | 146. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.061 | 0.067 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.591 |
Model: | OLS | Adj. R-squared: | 0.480 |
Method: | Least Squares | F-statistic: | 5.308 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0166 |
Time: | 05:18:36 | Log-Likelihood: | -68.587 |
No. Observations: | 15 | AIC: | 145.2 |
Df Residuals: | 11 | BIC: | 148.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -501.6239 | 433.058 | -1.158 | 0.271 | -1454.778 451.530 |
C(dose)[T.1] | 171.0071 | 531.307 | 0.322 | 0.754 | -998.393 1340.407 |
expression | 73.3918 | 55.836 | 1.314 | 0.215 | -49.503 196.287 |
expression:C(dose)[T.1] | -19.8731 | 66.881 | -0.297 | 0.772 | -167.078 127.332 |
Omnibus: | 0.749 | Durbin-Watson: | 0.717 |
Prob(Omnibus): | 0.688 | Jarque-Bera (JB): | 0.601 |
Skew: | -0.429 | Prob(JB): | 0.740 |
Kurtosis: | 2.527 | Cond. No. | 899. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.588 |
Model: | OLS | Adj. R-squared: | 0.520 |
Method: | Least Squares | F-statistic: | 8.569 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00488 |
Time: | 05:18:36 | Log-Likelihood: | -68.647 |
No. Observations: | 15 | AIC: | 143.3 |
Df Residuals: | 12 | BIC: | 145.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -394.2262 | 229.299 | -1.719 | 0.111 | -893.826 105.373 |
C(dose)[T.1] | 13.2869 | 22.419 | 0.593 | 0.564 | -35.560 62.134 |
expression | 59.5405 | 29.545 | 2.015 | 0.067 | -4.833 123.914 |
Omnibus: | 0.744 | Durbin-Watson: | 0.723 |
Prob(Omnibus): | 0.690 | Jarque-Bera (JB): | 0.597 |
Skew: | -0.428 | Prob(JB): | 0.742 |
Kurtosis: | 2.528 | Cond. No. | 279. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:18:36 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.576 |
Model: | OLS | Adj. R-squared: | 0.543 |
Method: | Least Squares | F-statistic: | 17.67 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00103 |
Time: | 05:18:36 | Log-Likelihood: | -68.863 |
No. Observations: | 15 | AIC: | 141.7 |
Df Residuals: | 13 | BIC: | 143.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -499.5284 | 141.282 | -3.536 | 0.004 | -804.750 -194.307 |
expression | 73.4581 | 17.476 | 4.203 | 0.001 | 35.703 111.214 |
Omnibus: | 0.132 | Durbin-Watson: | 0.695 |
Prob(Omnibus): | 0.936 | Jarque-Bera (JB): | 0.328 |
Skew: | -0.144 | Prob(JB): | 0.849 |
Kurtosis: | 2.335 | Cond. No. | 175. |