AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.079 0.781 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.674
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 13.10
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.17e-05
Time: 03:39:37 Log-Likelihood: -100.21
No. Observations: 23 AIC: 208.4
Df Residuals: 19 BIC: 213.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 91.1228 40.515 2.249 0.037 6.325 175.921
C(dose)[T.1] -23.1994 65.075 -0.357 0.725 -159.403 113.004
expression -7.2988 7.922 -0.921 0.368 -23.881 9.283
expression:C(dose)[T.1] 15.8394 13.470 1.176 0.254 -12.353 44.032
Omnibus: 0.185 Durbin-Watson: 1.908
Prob(Omnibus): 0.912 Jarque-Bera (JB): 0.395
Skew: 0.029 Prob(JB): 0.821
Kurtosis: 2.361 Cond. No. 93.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.61
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.72e-05
Time: 03:39:37 Log-Likelihood: -101.02
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 63.4104 33.269 1.906 0.071 -5.988 132.809
C(dose)[T.1] 52.5759 9.161 5.739 0.000 33.466 71.686
expression -1.8194 6.468 -0.281 0.781 -15.312 11.673
Omnibus: 0.187 Durbin-Watson: 1.887
Prob(Omnibus): 0.911 Jarque-Bera (JB): 0.396
Skew: 0.050 Prob(JB): 0.821
Kurtosis: 2.365 Cond. No. 39.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:39:37 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.075
Model: OLS Adj. R-squared: 0.031
Method: Least Squares F-statistic: 1.698
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.207
Time: 03:39:37 Log-Likelihood: -112.21
No. Observations: 23 AIC: 228.4
Df Residuals: 21 BIC: 230.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 141.8199 48.160 2.945 0.008 41.665 241.975
expression -12.7848 9.811 -1.303 0.207 -33.188 7.618
Omnibus: 2.332 Durbin-Watson: 2.335
Prob(Omnibus): 0.312 Jarque-Bera (JB): 1.566
Skew: 0.416 Prob(JB): 0.457
Kurtosis: 2.029 Cond. No. 35.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.225 0.644 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.485
Model: OLS Adj. R-squared: 0.344
Method: Least Squares F-statistic: 3.450
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0551
Time: 03:39:37 Log-Likelihood: -70.327
No. Observations: 15 AIC: 148.7
Df Residuals: 11 BIC: 151.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 122.1275 67.738 1.803 0.099 -26.964 271.219
C(dose)[T.1] -30.0305 104.618 -0.287 0.779 -260.294 200.233
expression -10.2343 12.487 -0.820 0.430 -37.717 17.248
expression:C(dose)[T.1] 15.3450 20.658 0.743 0.473 -30.124 60.814
Omnibus: 4.722 Durbin-Watson: 1.162
Prob(Omnibus): 0.094 Jarque-Bera (JB): 2.732
Skew: -1.040 Prob(JB): 0.255
Kurtosis: 3.210 Cond. No. 87.7

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.459
Model: OLS Adj. R-squared: 0.369
Method: Least Squares F-statistic: 5.089
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0251
Time: 03:39:37 Log-Likelihood: -70.694
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 92.1648 53.392 1.726 0.110 -24.167 208.497
C(dose)[T.1] 46.6722 16.478 2.832 0.015 10.770 82.574
expression -4.6282 9.760 -0.474 0.644 -25.893 16.637
Omnibus: 2.539 Durbin-Watson: 0.939
Prob(Omnibus): 0.281 Jarque-Bera (JB): 1.836
Skew: -0.821 Prob(JB): 0.399
Kurtosis: 2.506 Cond. No. 36.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:39:37 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.097
Model: OLS Adj. R-squared: 0.028
Method: Least Squares F-statistic: 1.399
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.258
Time: 03:39:37 Log-Likelihood: -74.533
No. Observations: 15 AIC: 153.1
Df Residuals: 13 BIC: 154.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 162.1892 58.732 2.762 0.016 35.307 289.071
expression -13.5586 11.463 -1.183 0.258 -38.323 11.206
Omnibus: 0.429 Durbin-Watson: 1.930
Prob(Omnibus): 0.807 Jarque-Bera (JB): 0.534
Skew: 0.267 Prob(JB): 0.766
Kurtosis: 2.245 Cond. No. 32.3