AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.009 | 0.926 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.595 |
Method: | Least Squares | F-statistic: | 11.76 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000139 |
Time: | 04:57:18 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 102.8211 | 223.291 | 0.460 | 0.650 | -364.533 570.175 |
C(dose)[T.1] | 0.6001 | 260.109 | 0.002 | 0.998 | -543.814 545.014 |
expression | -5.0993 | 23.413 | -0.218 | 0.830 | -54.104 43.905 |
expression:C(dose)[T.1] | 5.5680 | 27.884 | 0.200 | 0.844 | -52.794 63.930 |
Omnibus: | 0.245 | Durbin-Watson: | 1.922 |
Prob(Omnibus): | 0.885 | Jarque-Bera (JB): | 0.437 |
Skew: | 0.089 | Prob(JB): | 0.804 |
Kurtosis: | 2.349 | Cond. No. | 763. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.51 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.82e-05 |
Time: | 04:57:18 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 65.3969 | 118.434 | 0.552 | 0.587 | -181.651 312.445 |
C(dose)[T.1] | 52.4752 | 12.645 | 4.150 | 0.000 | 26.098 78.853 |
expression | -1.1736 | 12.407 | -0.095 | 0.926 | -27.054 24.707 |
Omnibus: | 0.186 | Durbin-Watson: | 1.900 |
Prob(Omnibus): | 0.911 | Jarque-Bera (JB): | 0.395 |
Skew: | 0.043 | Prob(JB): | 0.821 |
Kurtosis: | 2.364 | Cond. No. | 253. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:57:18 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.347 |
Model: | OLS | Adj. R-squared: | 0.316 |
Method: | Least Squares | F-statistic: | 11.17 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00309 |
Time: | 04:57:18 | Log-Likelihood: | -108.20 |
No. Observations: | 23 | AIC: | 220.4 |
Df Residuals: | 21 | BIC: | 222.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 431.1442 | 105.322 | 4.094 | 0.001 | 212.114 650.174 |
expression | -38.2732 | 11.453 | -3.342 | 0.003 | -62.091 -14.456 |
Omnibus: | 0.970 | Durbin-Watson: | 2.119 |
Prob(Omnibus): | 0.616 | Jarque-Bera (JB): | 0.780 |
Skew: | 0.087 | Prob(JB): | 0.677 |
Kurtosis: | 2.115 | Cond. No. | 168. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.229 | 0.641 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.467 |
Model: | OLS | Adj. R-squared: | 0.322 |
Method: | Least Squares | F-statistic: | 3.217 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0653 |
Time: | 04:57:18 | Log-Likelihood: | -70.576 |
No. Observations: | 15 | AIC: | 149.2 |
Df Residuals: | 11 | BIC: | 152.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -23.5754 | 155.663 | -0.151 | 0.882 | -366.188 319.037 |
C(dose)[T.1] | 216.1829 | 412.860 | 0.524 | 0.611 | -692.515 1124.881 |
expression | 11.0577 | 18.860 | 0.586 | 0.570 | -30.453 52.568 |
expression:C(dose)[T.1] | -19.8842 | 48.241 | -0.412 | 0.688 | -126.062 86.294 |
Omnibus: | 2.906 | Durbin-Watson: | 1.124 |
Prob(Omnibus): | 0.234 | Jarque-Bera (JB): | 2.044 |
Skew: | -0.880 | Prob(JB): | 0.360 |
Kurtosis: | 2.582 | Cond. No. | 520. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.459 |
Model: | OLS | Adj. R-squared: | 0.369 |
Method: | Least Squares | F-statistic: | 5.093 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0250 |
Time: | 04:57:18 | Log-Likelihood: | -70.691 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1.4363 | 138.302 | 0.010 | 0.992 | -299.897 302.770 |
C(dose)[T.1] | 46.1613 | 16.831 | 2.743 | 0.018 | 9.490 82.833 |
expression | 8.0186 | 16.748 | 0.479 | 0.641 | -28.471 44.509 |
Omnibus: | 3.479 | Durbin-Watson: | 1.013 |
Prob(Omnibus): | 0.176 | Jarque-Bera (JB): | 2.207 |
Skew: | -0.936 | Prob(JB): | 0.332 |
Kurtosis: | 2.842 | Cond. No. | 153. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:57:18 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.120 |
Model: | OLS | Adj. R-squared: | 0.052 |
Method: | Least Squares | F-statistic: | 1.774 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.206 |
Time: | 04:57:18 | Log-Likelihood: | -74.341 |
No. Observations: | 15 | AIC: | 152.7 |
Df Residuals: | 13 | BIC: | 154.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -119.8175 | 160.588 | -0.746 | 0.469 | -466.747 227.112 |
expression | 25.3189 | 19.012 | 1.332 | 0.206 | -15.754 66.392 |
Omnibus: | 0.421 | Durbin-Watson: | 1.804 |
Prob(Omnibus): | 0.810 | Jarque-Bera (JB): | 0.508 |
Skew: | -0.038 | Prob(JB): | 0.776 |
Kurtosis: | 2.102 | Cond. No. | 144. |