AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.098 0.758 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.604
Method: Least Squares F-statistic: 12.18
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.000113
Time: 18:36:43 Log-Likelihood: -100.77
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 105.2703 327.225 0.322 0.751 -579.620 790.160
C(dose)[T.1] -281.1250 529.368 -0.531 0.602 -1389.104 826.854
expression -4.9845 31.937 -0.156 0.878 -71.829 61.860
expression:C(dose)[T.1] 31.7929 50.686 0.627 0.538 -74.293 137.879
Omnibus: 0.666 Durbin-Watson: 1.983
Prob(Omnibus): 0.717 Jarque-Bera (JB): 0.659
Skew: 0.079 Prob(JB): 0.719
Kurtosis: 2.186 Cond. No. 1.55e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.63
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.70e-05
Time: 18:36:43 Log-Likelihood: -101.01
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -24.0370 250.242 -0.096 0.924 -546.033 497.959
C(dose)[T.1] 50.8387 11.847 4.291 0.000 26.127 75.551
expression 7.6380 24.421 0.313 0.758 -43.302 58.578
Omnibus: 0.502 Durbin-Watson: 1.854
Prob(Omnibus): 0.778 Jarque-Bera (JB): 0.586
Skew: 0.089 Prob(JB): 0.746
Kurtosis: 2.239 Cond. No. 602.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 18:36:43 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.329
Model: OLS Adj. R-squared: 0.297
Method: Least Squares F-statistic: 10.31
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00420
Time: 18:36:43 Log-Likelihood: -108.51
No. Observations: 23 AIC: 221.0
Df Residuals: 21 BIC: 223.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -734.6676 253.751 -2.895 0.009 -1262.372 -206.964
expression 78.3013 24.391 3.210 0.004 27.578 129.025
Omnibus: 4.955 Durbin-Watson: 2.272
Prob(Omnibus): 0.084 Jarque-Bera (JB): 1.600
Skew: -0.015 Prob(JB): 0.449
Kurtosis: 1.708 Cond. No. 451.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
8.956 0.011 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.693
Model: OLS Adj. R-squared: 0.609
Method: Least Squares F-statistic: 8.261
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00369
Time: 18:36:43 Log-Likelihood: -66.453
No. Observations: 15 AIC: 140.9
Df Residuals: 11 BIC: 143.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 436.7609 264.515 1.651 0.127 -145.432 1018.954
C(dose)[T.1] 235.3255 339.985 0.692 0.503 -512.975 983.626
expression -39.3263 28.149 -1.397 0.190 -101.282 22.630
expression:C(dose)[T.1] -19.6425 36.135 -0.544 0.598 -99.176 59.891
Omnibus: 0.446 Durbin-Watson: 0.889
Prob(Omnibus): 0.800 Jarque-Bera (JB): 0.378
Skew: -0.323 Prob(JB): 0.828
Kurtosis: 2.568 Cond. No. 737.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.684
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 13.01
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.000989
Time: 18:36:43 Log-Likelihood: -66.652
No. Observations: 15 AIC: 139.3
Df Residuals: 12 BIC: 141.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 548.7051 161.058 3.407 0.005 197.789 899.621
C(dose)[T.1] 50.6364 11.920 4.248 0.001 24.664 76.609
expression -51.2461 17.124 -2.993 0.011 -88.557 -13.935
Omnibus: 0.384 Durbin-Watson: 0.914
Prob(Omnibus): 0.825 Jarque-Bera (JB): 0.508
Skew: -0.228 Prob(JB): 0.776
Kurtosis: 2.223 Cond. No. 258.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 18:36:43 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.210
Model: OLS Adj. R-squared: 0.149
Method: Least Squares F-statistic: 3.449
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0861
Time: 18:36:43 Log-Likelihood: -73.535
No. Observations: 15 AIC: 151.1
Df Residuals: 13 BIC: 152.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 548.0901 244.847 2.239 0.043 19.131 1077.049
expression -48.3097 26.012 -1.857 0.086 -104.505 7.886
Omnibus: 1.554 Durbin-Watson: 1.819
Prob(Omnibus): 0.460 Jarque-Bera (JB): 0.894
Skew: 0.173 Prob(JB): 0.639
Kurtosis: 1.855 Cond. No. 258.