AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.098 | 0.758 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.658 |
Model: | OLS | Adj. R-squared: | 0.604 |
Method: | Least Squares | F-statistic: | 12.18 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.000113 |
Time: | 18:36:43 | Log-Likelihood: | -100.77 |
No. Observations: | 23 | AIC: | 209.5 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 105.2703 | 327.225 | 0.322 | 0.751 | -579.620 790.160 |
C(dose)[T.1] | -281.1250 | 529.368 | -0.531 | 0.602 | -1389.104 826.854 |
expression | -4.9845 | 31.937 | -0.156 | 0.878 | -71.829 61.860 |
expression:C(dose)[T.1] | 31.7929 | 50.686 | 0.627 | 0.538 | -74.293 137.879 |
Omnibus: | 0.666 | Durbin-Watson: | 1.983 |
Prob(Omnibus): | 0.717 | Jarque-Bera (JB): | 0.659 |
Skew: | 0.079 | Prob(JB): | 0.719 |
Kurtosis: | 2.186 | Cond. No. | 1.55e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.63 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 2.70e-05 |
Time: | 18:36:43 | Log-Likelihood: | -101.01 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -24.0370 | 250.242 | -0.096 | 0.924 | -546.033 497.959 |
C(dose)[T.1] | 50.8387 | 11.847 | 4.291 | 0.000 | 26.127 75.551 |
expression | 7.6380 | 24.421 | 0.313 | 0.758 | -43.302 58.578 |
Omnibus: | 0.502 | Durbin-Watson: | 1.854 |
Prob(Omnibus): | 0.778 | Jarque-Bera (JB): | 0.586 |
Skew: | 0.089 | Prob(JB): | 0.746 |
Kurtosis: | 2.239 | Cond. No. | 602. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 18:36:43 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.329 |
Model: | OLS | Adj. R-squared: | 0.297 |
Method: | Least Squares | F-statistic: | 10.31 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00420 |
Time: | 18:36:43 | Log-Likelihood: | -108.51 |
No. Observations: | 23 | AIC: | 221.0 |
Df Residuals: | 21 | BIC: | 223.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -734.6676 | 253.751 | -2.895 | 0.009 | -1262.372 -206.964 |
expression | 78.3013 | 24.391 | 3.210 | 0.004 | 27.578 129.025 |
Omnibus: | 4.955 | Durbin-Watson: | 2.272 |
Prob(Omnibus): | 0.084 | Jarque-Bera (JB): | 1.600 |
Skew: | -0.015 | Prob(JB): | 0.449 |
Kurtosis: | 1.708 | Cond. No. | 451. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
8.956 | 0.011 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.693 |
Model: | OLS | Adj. R-squared: | 0.609 |
Method: | Least Squares | F-statistic: | 8.261 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00369 |
Time: | 18:36:43 | Log-Likelihood: | -66.453 |
No. Observations: | 15 | AIC: | 140.9 |
Df Residuals: | 11 | BIC: | 143.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 436.7609 | 264.515 | 1.651 | 0.127 | -145.432 1018.954 |
C(dose)[T.1] | 235.3255 | 339.985 | 0.692 | 0.503 | -512.975 983.626 |
expression | -39.3263 | 28.149 | -1.397 | 0.190 | -101.282 22.630 |
expression:C(dose)[T.1] | -19.6425 | 36.135 | -0.544 | 0.598 | -99.176 59.891 |
Omnibus: | 0.446 | Durbin-Watson: | 0.889 |
Prob(Omnibus): | 0.800 | Jarque-Bera (JB): | 0.378 |
Skew: | -0.323 | Prob(JB): | 0.828 |
Kurtosis: | 2.568 | Cond. No. | 737. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.684 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 13.01 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.000989 |
Time: | 18:36:43 | Log-Likelihood: | -66.652 |
No. Observations: | 15 | AIC: | 139.3 |
Df Residuals: | 12 | BIC: | 141.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 548.7051 | 161.058 | 3.407 | 0.005 | 197.789 899.621 |
C(dose)[T.1] | 50.6364 | 11.920 | 4.248 | 0.001 | 24.664 76.609 |
expression | -51.2461 | 17.124 | -2.993 | 0.011 | -88.557 -13.935 |
Omnibus: | 0.384 | Durbin-Watson: | 0.914 |
Prob(Omnibus): | 0.825 | Jarque-Bera (JB): | 0.508 |
Skew: | -0.228 | Prob(JB): | 0.776 |
Kurtosis: | 2.223 | Cond. No. | 258. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 18:36:43 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.210 |
Model: | OLS | Adj. R-squared: | 0.149 |
Method: | Least Squares | F-statistic: | 3.449 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0861 |
Time: | 18:36:43 | Log-Likelihood: | -73.535 |
No. Observations: | 15 | AIC: | 151.1 |
Df Residuals: | 13 | BIC: | 152.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 548.0901 | 244.847 | 2.239 | 0.043 | 19.131 1077.049 |
expression | -48.3097 | 26.012 | -1.857 | 0.086 | -104.505 7.886 |
Omnibus: | 1.554 | Durbin-Watson: | 1.819 |
Prob(Omnibus): | 0.460 | Jarque-Bera (JB): | 0.894 |
Skew: | 0.173 | Prob(JB): | 0.639 |
Kurtosis: | 1.855 | Cond. No. | 258. |