AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.596 | 0.449 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.714 |
Model: | OLS | Adj. R-squared: | 0.668 |
Method: | Least Squares | F-statistic: | 15.77 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.16e-05 |
Time: | 04:07:32 | Log-Likelihood: | -98.729 |
No. Observations: | 23 | AIC: | 205.5 |
Df Residuals: | 19 | BIC: | 210.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 89.2362 | 57.324 | 1.557 | 0.136 | -30.744 209.216 |
C(dose)[T.1] | -100.3392 | 83.258 | -1.205 | 0.243 | -274.600 73.922 |
expression | -5.5904 | 9.105 | -0.614 | 0.546 | -24.647 13.466 |
expression:C(dose)[T.1] | 26.5246 | 13.976 | 1.898 | 0.073 | -2.727 55.776 |
Omnibus: | 1.230 | Durbin-Watson: | 1.910 |
Prob(Omnibus): | 0.541 | Jarque-Bera (JB): | 1.058 |
Skew: | 0.480 | Prob(JB): | 0.589 |
Kurtosis: | 2.572 | Cond. No. | 159. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.659 |
Model: | OLS | Adj. R-squared: | 0.625 |
Method: | Least Squares | F-statistic: | 19.34 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.11e-05 |
Time: | 04:07:32 | Log-Likelihood: | -100.73 |
No. Observations: | 23 | AIC: | 207.5 |
Df Residuals: | 20 | BIC: | 210.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 18.7022 | 46.397 | 0.403 | 0.691 | -78.080 115.484 |
C(dose)[T.1] | 56.7264 | 9.694 | 5.852 | 0.000 | 36.505 76.948 |
expression | 5.6667 | 7.343 | 0.772 | 0.449 | -9.651 20.984 |
Omnibus: | 1.456 | Durbin-Watson: | 1.719 |
Prob(Omnibus): | 0.483 | Jarque-Bera (JB): | 0.921 |
Skew: | 0.020 | Prob(JB): | 0.631 |
Kurtosis: | 2.021 | Cond. No. | 66.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:07:32 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.076 |
Model: | OLS | Adj. R-squared: | 0.032 |
Method: | Least Squares | F-statistic: | 1.721 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.204 |
Time: | 04:07:32 | Log-Likelihood: | -112.20 |
No. Observations: | 23 | AIC: | 228.4 |
Df Residuals: | 21 | BIC: | 230.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 162.2412 | 63.293 | 2.563 | 0.018 | 30.616 293.867 |
expression | -13.8006 | 10.521 | -1.312 | 0.204 | -35.680 8.079 |
Omnibus: | 3.061 | Durbin-Watson: | 2.402 |
Prob(Omnibus): | 0.216 | Jarque-Bera (JB): | 2.086 |
Skew: | 0.551 | Prob(JB): | 0.352 |
Kurtosis: | 2.019 | Cond. No. | 56.4 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.174 | 0.684 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.459 |
Model: | OLS | Adj. R-squared: | 0.311 |
Method: | Least Squares | F-statistic: | 3.108 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0708 |
Time: | 04:07:32 | Log-Likelihood: | -70.696 |
No. Observations: | 15 | AIC: | 149.4 |
Df Residuals: | 11 | BIC: | 152.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 195.5721 | 402.886 | 0.485 | 0.637 | -691.173 1082.317 |
C(dose)[T.1] | -39.0149 | 421.968 | -0.092 | 0.928 | -967.760 889.730 |
expression | -18.3673 | 57.722 | -0.318 | 0.756 | -145.413 108.678 |
expression:C(dose)[T.1] | 12.6263 | 60.453 | 0.209 | 0.838 | -120.431 145.683 |
Omnibus: | 3.030 | Durbin-Watson: | 0.760 |
Prob(Omnibus): | 0.220 | Jarque-Bera (JB): | 2.212 |
Skew: | -0.905 | Prob(JB): | 0.331 |
Kurtosis: | 2.487 | Cond. No. | 587. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.457 |
Model: | OLS | Adj. R-squared: | 0.366 |
Method: | Least Squares | F-statistic: | 5.042 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0257 |
Time: | 04:07:32 | Log-Likelihood: | -70.725 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 115.2621 | 115.379 | 0.999 | 0.338 | -136.126 366.651 |
C(dose)[T.1] | 49.0518 | 15.631 | 3.138 | 0.009 | 14.995 83.109 |
expression | -6.8562 | 16.457 | -0.417 | 0.684 | -42.712 29.000 |
Omnibus: | 2.754 | Durbin-Watson: | 0.723 |
Prob(Omnibus): | 0.252 | Jarque-Bera (JB): | 2.052 |
Skew: | -0.857 | Prob(JB): | 0.358 |
Kurtosis: | 2.413 | Cond. No. | 106. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:07:32 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.011 |
Model: | OLS | Adj. R-squared: | -0.065 |
Method: | Least Squares | F-statistic: | 0.1408 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.714 |
Time: | 04:07:32 | Log-Likelihood: | -75.219 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 149.4123 | 148.908 | 1.003 | 0.334 | -172.284 471.108 |
expression | -8.0031 | 21.329 | -0.375 | 0.714 | -54.081 38.075 |
Omnibus: | 0.609 | Durbin-Watson: | 1.670 |
Prob(Omnibus): | 0.737 | Jarque-Bera (JB): | 0.584 |
Skew: | 0.049 | Prob(JB): | 0.747 |
Kurtosis: | 2.039 | Cond. No. | 105. |