AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.078 | 0.783 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.659 |
Model: | OLS | Adj. R-squared: | 0.605 |
Method: | Least Squares | F-statistic: | 12.22 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000110 |
Time: | 05:26:15 | Log-Likelihood: | -100.74 |
No. Observations: | 23 | AIC: | 209.5 |
Df Residuals: | 19 | BIC: | 214.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -0.3736 | 134.561 | -0.003 | 0.998 | -282.012 281.265 |
C(dose)[T.1] | 162.5808 | 162.078 | 1.003 | 0.328 | -176.652 501.814 |
expression | 9.0189 | 22.211 | 0.406 | 0.689 | -37.470 55.507 |
expression:C(dose)[T.1] | -18.1223 | 26.807 | -0.676 | 0.507 | -74.229 37.985 |
Omnibus: | 0.140 | Durbin-Watson: | 1.836 |
Prob(Omnibus): | 0.932 | Jarque-Bera (JB): | 0.358 |
Skew: | -0.058 | Prob(JB): | 0.836 |
Kurtosis: | 2.400 | Cond. No. | 320. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.61 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.73e-05 |
Time: | 05:26:15 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 74.9215 | 74.477 | 1.006 | 0.326 | -80.436 230.279 |
C(dose)[T.1] | 53.1751 | 8.772 | 6.062 | 0.000 | 34.877 71.473 |
expression | -3.4226 | 12.266 | -0.279 | 0.783 | -29.008 22.163 |
Omnibus: | 0.355 | Durbin-Watson: | 1.869 |
Prob(Omnibus): | 0.838 | Jarque-Bera (JB): | 0.504 |
Skew: | 0.057 | Prob(JB): | 0.777 |
Kurtosis: | 2.284 | Cond. No. | 106. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:26:15 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.008 |
Model: | OLS | Adj. R-squared: | -0.039 |
Method: | Least Squares | F-statistic: | 0.1720 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.683 |
Time: | 05:26:15 | Log-Likelihood: | -113.01 |
No. Observations: | 23 | AIC: | 230.0 |
Df Residuals: | 21 | BIC: | 232.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 130.0250 | 121.514 | 1.070 | 0.297 | -122.676 382.726 |
expression | -8.3439 | 20.119 | -0.415 | 0.683 | -50.183 33.495 |
Omnibus: | 3.884 | Durbin-Watson: | 2.486 |
Prob(Omnibus): | 0.143 | Jarque-Bera (JB): | 1.621 |
Skew: | 0.252 | Prob(JB): | 0.445 |
Kurtosis: | 1.801 | Cond. No. | 105. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.002 | 0.961 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.572 |
Method: | Least Squares | F-statistic: | 7.248 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00592 |
Time: | 05:26:15 | Log-Likelihood: | -67.119 |
No. Observations: | 15 | AIC: | 142.2 |
Df Residuals: | 11 | BIC: | 145.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 440.2119 | 192.130 | 2.291 | 0.043 | 17.336 863.088 |
C(dose)[T.1] | -671.7513 | 272.038 | -2.469 | 0.031 | -1270.503 -73.000 |
expression | -63.6302 | 32.756 | -1.943 | 0.078 | -135.725 8.464 |
expression:C(dose)[T.1] | 116.3644 | 43.841 | 2.654 | 0.022 | 19.870 212.859 |
Omnibus: | 1.106 | Durbin-Watson: | 0.981 |
Prob(Omnibus): | 0.575 | Jarque-Bera (JB): | 0.867 |
Skew: | -0.323 | Prob(JB): | 0.648 |
Kurtosis: | 2.015 | Cond. No. | 373. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.887 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 05:26:15 | Log-Likelihood: | -70.831 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 59.6582 | 156.834 | 0.380 | 0.710 | -282.053 401.369 |
C(dose)[T.1] | 48.2101 | 25.335 | 1.903 | 0.081 | -6.990 103.410 |
expression | 1.3263 | 26.698 | 0.050 | 0.961 | -56.843 59.496 |
Omnibus: | 2.701 | Durbin-Watson: | 0.801 |
Prob(Omnibus): | 0.259 | Jarque-Bera (JB): | 1.892 |
Skew: | -0.844 | Prob(JB): | 0.388 |
Kurtosis: | 2.583 | Cond. No. | 130. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:26:15 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.283 |
Model: | OLS | Adj. R-squared: | 0.227 |
Method: | Least Squares | F-statistic: | 5.121 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0414 |
Time: | 05:26:15 | Log-Likelihood: | -72.809 |
No. Observations: | 15 | AIC: | 149.6 |
Df Residuals: | 13 | BIC: | 151.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -163.6649 | 114.044 | -1.435 | 0.175 | -410.042 82.713 |
expression | 41.1388 | 18.180 | 2.263 | 0.041 | 1.864 80.414 |
Omnibus: | 2.951 | Durbin-Watson: | 1.055 |
Prob(Omnibus): | 0.229 | Jarque-Bera (JB): | 1.544 |
Skew: | -0.785 | Prob(JB): | 0.462 |
Kurtosis: | 3.082 | Cond. No. | 85.2 |