AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.566 | 0.125 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.771 |
Model: | OLS | Adj. R-squared: | 0.735 |
Method: | Least Squares | F-statistic: | 21.33 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.66e-06 |
Time: | 22:47:54 | Log-Likelihood: | -96.151 |
No. Observations: | 23 | AIC: | 200.3 |
Df Residuals: | 19 | BIC: | 204.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 111.9942 | 215.016 | 0.521 | 0.608 | -338.039 562.028 |
C(dose)[T.1] | 1204.4600 | 437.774 | 2.751 | 0.013 | 288.188 2120.732 |
expression | -5.2522 | 19.538 | -0.269 | 0.791 | -46.145 35.641 |
expression:C(dose)[T.1] | -101.8711 | 39.029 | -2.610 | 0.017 | -183.561 -20.181 |
Omnibus: | 3.633 | Durbin-Watson: | 1.844 |
Prob(Omnibus): | 0.163 | Jarque-Bera (JB): | 2.417 |
Skew: | 0.791 | Prob(JB): | 0.299 |
Kurtosis: | 3.130 | Cond. No. | 1.60e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.689 |
Model: | OLS | Adj. R-squared: | 0.658 |
Method: | Least Squares | F-statistic: | 22.15 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 8.47e-06 |
Time: | 22:47:54 | Log-Likelihood: | -99.674 |
No. Observations: | 23 | AIC: | 205.3 |
Df Residuals: | 20 | BIC: | 208.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 392.8549 | 211.481 | 1.858 | 0.078 | -48.287 833.997 |
C(dose)[T.1] | 62.0490 | 9.886 | 6.276 | 0.000 | 41.426 82.672 |
expression | -30.7800 | 19.215 | -1.602 | 0.125 | -70.861 9.301 |
Omnibus: | 3.725 | Durbin-Watson: | 1.966 |
Prob(Omnibus): | 0.155 | Jarque-Bera (JB): | 1.415 |
Skew: | 0.040 | Prob(JB): | 0.493 |
Kurtosis: | 1.787 | Cond. No. | 577. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:47:55 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.076 |
Model: | OLS | Adj. R-squared: | 0.032 |
Method: | Least Squares | F-statistic: | 1.736 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.202 |
Time: | 22:47:55 | Log-Likelihood: | -112.19 |
No. Observations: | 23 | AIC: | 228.4 |
Df Residuals: | 21 | BIC: | 230.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -316.3230 | 300.626 | -1.052 | 0.305 | -941.509 308.863 |
expression | 35.5591 | 26.985 | 1.318 | 0.202 | -20.559 91.677 |
Omnibus: | 2.337 | Durbin-Watson: | 2.252 |
Prob(Omnibus): | 0.311 | Jarque-Bera (JB): | 1.544 |
Skew: | 0.403 | Prob(JB): | 0.462 |
Kurtosis: | 2.020 | Cond. No. | 487. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.004 | 0.952 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.485 |
Model: | OLS | Adj. R-squared: | 0.345 |
Method: | Least Squares | F-statistic: | 3.458 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0548 |
Time: | 22:47:55 | Log-Likelihood: | -70.318 |
No. Observations: | 15 | AIC: | 148.6 |
Df Residuals: | 11 | BIC: | 151.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 189.5770 | 202.287 | 0.937 | 0.369 | -255.654 634.808 |
C(dose)[T.1] | -228.1373 | 314.406 | -0.726 | 0.483 | -920.140 463.865 |
expression | -13.9169 | 23.010 | -0.605 | 0.558 | -64.561 36.727 |
expression:C(dose)[T.1] | 32.1236 | 36.403 | 0.882 | 0.396 | -48.000 112.247 |
Omnibus: | 2.121 | Durbin-Watson: | 1.150 |
Prob(Omnibus): | 0.346 | Jarque-Bera (JB): | 1.181 |
Skew: | -0.685 | Prob(JB): | 0.554 |
Kurtosis: | 2.881 | Cond. No. | 442. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.888 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0280 |
Time: | 22:47:55 | Log-Likelihood: | -70.831 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 76.9347 | 155.472 | 0.495 | 0.630 | -261.810 415.679 |
C(dose)[T.1] | 48.9219 | 16.362 | 2.990 | 0.011 | 13.273 84.571 |
expression | -1.0831 | 17.665 | -0.061 | 0.952 | -39.572 37.406 |
Omnibus: | 2.693 | Durbin-Watson: | 0.812 |
Prob(Omnibus): | 0.260 | Jarque-Bera (JB): | 1.874 |
Skew: | -0.842 | Prob(JB): | 0.392 |
Kurtosis: | 2.597 | Cond. No. | 174. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:47:55 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.038 |
Model: | OLS | Adj. R-squared: | -0.036 |
Method: | Least Squares | F-statistic: | 0.5191 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.484 |
Time: | 22:47:56 | Log-Likelihood: | -75.006 |
No. Observations: | 15 | AIC: | 154.0 |
Df Residuals: | 13 | BIC: | 155.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 227.9320 | 186.621 | 1.221 | 0.244 | -175.238 631.102 |
expression | -15.5367 | 21.564 | -0.720 | 0.484 | -62.124 31.050 |
Omnibus: | 2.157 | Durbin-Watson: | 1.623 |
Prob(Omnibus): | 0.340 | Jarque-Bera (JB): | 1.007 |
Skew: | 0.137 | Prob(JB): | 0.604 |
Kurtosis: | 1.761 | Cond. No. | 164. |