AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.463 0.504 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.825
Model: OLS Adj. R-squared: 0.797
Method: Least Squares F-statistic: 29.86
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.13e-07
Time: 22:45:55 Log-Likelihood: -93.060
No. Observations: 23 AIC: 194.1
Df Residuals: 19 BIC: 198.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -369.9542 250.695 -1.476 0.156 -894.664 154.756
C(dose)[T.1] 1949.6535 443.071 4.400 0.000 1022.295 2877.012
expression 41.2171 24.357 1.692 0.107 -9.763 92.197
expression:C(dose)[T.1] -181.1547 42.415 -4.271 0.000 -269.930 -92.379
Omnibus: 8.108 Durbin-Watson: 2.033
Prob(Omnibus): 0.017 Jarque-Bera (JB): 5.796
Skew: 1.060 Prob(JB): 0.0551
Kurtosis: 4.246 Cond. No. 1.77e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.15
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.25e-05
Time: 22:45:55 Log-Likelihood: -100.80
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 244.8210 280.085 0.874 0.392 -339.425 829.067
C(dose)[T.1] 57.5812 10.679 5.392 0.000 35.305 79.857
expression -18.5224 27.210 -0.681 0.504 -75.282 38.237
Omnibus: 2.245 Durbin-Watson: 1.907
Prob(Omnibus): 0.325 Jarque-Bera (JB): 1.164
Skew: 0.129 Prob(JB): 0.559
Kurtosis: 1.929 Cond. No. 680.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:45:55 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.158
Model: OLS Adj. R-squared: 0.118
Method: Least Squares F-statistic: 3.952
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0600
Time: 22:45:55 Log-Likelihood: -111.12
No. Observations: 23 AIC: 226.2
Df Residuals: 21 BIC: 228.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -618.5427 351.293 -1.761 0.093 -1349.096 112.010
expression 67.1370 33.770 1.988 0.060 -3.092 137.366
Omnibus: 2.076 Durbin-Watson: 1.885
Prob(Omnibus): 0.354 Jarque-Bera (JB): 1.788
Skew: 0.599 Prob(JB): 0.409
Kurtosis: 2.342 Cond. No. 557.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
7.492 0.018 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.721
Model: OLS Adj. R-squared: 0.644
Method: Least Squares F-statistic: 9.457
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00222
Time: 22:45:55 Log-Likelihood: -65.737
No. Observations: 15 AIC: 139.5
Df Residuals: 11 BIC: 142.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 278.2268 223.699 1.244 0.239 -214.132 770.586
C(dose)[T.1] 518.8327 311.910 1.663 0.124 -167.678 1205.343
expression -22.3823 23.735 -0.943 0.366 -74.622 29.858
expression:C(dose)[T.1] -51.3567 33.428 -1.536 0.153 -124.932 22.219
Omnibus: 0.731 Durbin-Watson: 0.632
Prob(Omnibus): 0.694 Jarque-Bera (JB): 0.674
Skew: -0.422 Prob(JB): 0.714
Kurtosis: 2.395 Cond. No. 671.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.604
Method: Least Squares F-statistic: 11.68
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00153
Time: 22:45:55 Log-Likelihood: -67.195
No. Observations: 15 AIC: 140.4
Df Residuals: 12 BIC: 142.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 522.0619 166.337 3.139 0.009 159.644 884.480
C(dose)[T.1] 40.0027 12.798 3.126 0.009 12.118 67.888
expression -48.2725 17.636 -2.737 0.018 -86.697 -9.848
Omnibus: 2.309 Durbin-Watson: 0.539
Prob(Omnibus): 0.315 Jarque-Bera (JB): 1.048
Skew: -0.160 Prob(JB): 0.592
Kurtosis: 1.745 Cond. No. 255.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:45:56 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.384
Model: OLS Adj. R-squared: 0.337
Method: Least Squares F-statistic: 8.117
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0137
Time: 22:45:56 Log-Likelihood: -71.662
No. Observations: 15 AIC: 147.3
Df Residuals: 13 BIC: 148.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 678.1733 205.318 3.303 0.006 234.611 1121.736
expression -62.7390 22.022 -2.849 0.014 -110.314 -15.164
Omnibus: 0.544 Durbin-Watson: 1.439
Prob(Omnibus): 0.762 Jarque-Bera (JB): 0.606
Skew: -0.279 Prob(JB): 0.739
Kurtosis: 2.189 Cond. No. 243.