AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.098 0.758 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.596
Method: Least Squares F-statistic: 11.82
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.000135
Time: 22:20:53 Log-Likelihood: -101.00
No. Observations: 23 AIC: 210.0
Df Residuals: 19 BIC: 214.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 78.4747 84.826 0.925 0.367 -99.067 256.017
C(dose)[T.1] 38.3292 101.190 0.379 0.709 -173.465 250.123
expression -3.9879 13.903 -0.287 0.777 -33.087 25.111
expression:C(dose)[T.1] 2.2982 17.125 0.134 0.895 -33.546 38.142
Omnibus: 0.407 Durbin-Watson: 1.867
Prob(Omnibus): 0.816 Jarque-Bera (JB): 0.548
Skew: 0.169 Prob(JB): 0.760
Kurtosis: 2.323 Cond. No. 188.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.63
Date: Mon, 27 Jan 2025 Prob (F-statistic): 2.70e-05
Time: 22:20:53 Log-Likelihood: -101.01
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 69.2582 48.548 1.427 0.169 -32.011 170.528
C(dose)[T.1] 51.8392 9.976 5.196 0.000 31.029 72.649
expression -2.4733 7.916 -0.312 0.758 -18.986 14.039
Omnibus: 0.582 Durbin-Watson: 1.873
Prob(Omnibus): 0.748 Jarque-Bera (JB): 0.648
Skew: 0.171 Prob(JB): 0.723
Kurtosis: 2.253 Cond. No. 67.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 22:20:53 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.179
Model: OLS Adj. R-squared: 0.140
Method: Least Squares F-statistic: 4.586
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0441
Time: 22:20:53 Log-Likelihood: -110.83
No. Observations: 23 AIC: 225.7
Df Residuals: 21 BIC: 227.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 208.6179 60.543 3.446 0.002 82.713 334.523
expression -22.2420 10.386 -2.142 0.044 -43.840 -0.644
Omnibus: 2.393 Durbin-Watson: 2.223
Prob(Omnibus): 0.302 Jarque-Bera (JB): 1.964
Skew: 0.599 Prob(JB): 0.375
Kurtosis: 2.216 Cond. No. 55.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.370 0.555 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.555
Model: OLS Adj. R-squared: 0.433
Method: Least Squares F-statistic: 4.569
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0260
Time: 22:20:53 Log-Likelihood: -69.231
No. Observations: 15 AIC: 146.5
Df Residuals: 11 BIC: 149.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 95.1886 64.313 1.480 0.167 -46.364 236.741
C(dose)[T.1] -109.3031 106.211 -1.029 0.326 -343.072 124.465
expression -7.3680 16.828 -0.438 0.670 -44.406 29.670
expression:C(dose)[T.1] 39.8386 26.788 1.487 0.165 -19.121 98.798
Omnibus: 1.015 Durbin-Watson: 0.878
Prob(Omnibus): 0.602 Jarque-Bera (JB): 0.797
Skew: -0.505 Prob(JB): 0.671
Kurtosis: 2.493 Cond. No. 76.9

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.465
Model: OLS Adj. R-squared: 0.376
Method: Least Squares F-statistic: 5.220
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0234
Time: 22:20:53 Log-Likelihood: -70.605
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 35.9566 52.985 0.679 0.510 -79.487 151.400
C(dose)[T.1] 47.0351 15.905 2.957 0.012 12.381 81.689
expression 8.3532 13.738 0.608 0.555 -21.580 38.286
Omnibus: 2.512 Durbin-Watson: 0.817
Prob(Omnibus): 0.285 Jarque-Bera (JB): 1.868
Skew: -0.816 Prob(JB): 0.393
Kurtosis: 2.428 Cond. No. 29.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 22:20:53 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.076
Model: OLS Adj. R-squared: 0.004
Method: Least Squares F-statistic: 1.062
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.322
Time: 22:20:54 Log-Likelihood: -74.711
No. Observations: 15 AIC: 153.4
Df Residuals: 13 BIC: 154.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 25.5779 66.786 0.383 0.708 -118.704 169.860
expression 17.4334 16.916 1.031 0.322 -19.111 53.978
Omnibus: 0.280 Durbin-Watson: 1.608
Prob(Omnibus): 0.870 Jarque-Bera (JB): 0.390
Skew: -0.255 Prob(JB): 0.823
Kurtosis: 2.397 Cond. No. 28.7