AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.458 0.506 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.720
Model: OLS Adj. R-squared: 0.676
Method: Least Squares F-statistic: 16.32
Date: Tue, 28 Jan 2025 Prob (F-statistic): 1.73e-05
Time: 18:55:21 Log-Likelihood: -98.450
No. Observations: 23 AIC: 204.9
Df Residuals: 19 BIC: 209.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 203.5775 105.382 1.932 0.068 -16.990 424.145
C(dose)[T.1] -195.3283 120.918 -1.615 0.123 -448.412 57.756
expression -19.4012 13.669 -1.419 0.172 -48.010 9.208
expression:C(dose)[T.1] 32.9368 15.860 2.077 0.052 -0.259 66.132
Omnibus: 0.963 Durbin-Watson: 2.245
Prob(Omnibus): 0.618 Jarque-Bera (JB): 0.591
Skew: 0.386 Prob(JB): 0.744
Kurtosis: 2.862 Cond. No. 334.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.15
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.26e-05
Time: 18:55:21 Log-Likelihood: -100.80
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 15.2257 57.935 0.263 0.795 -105.625 136.077
C(dose)[T.1] 55.1753 9.087 6.072 0.000 36.220 74.130
expression 5.0634 7.485 0.676 0.506 -10.549 20.676
Omnibus: 0.146 Durbin-Watson: 1.856
Prob(Omnibus): 0.930 Jarque-Bera (JB): 0.335
Skew: 0.134 Prob(JB): 0.846
Kurtosis: 2.473 Cond. No. 103.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 18:55:21 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.024
Model: OLS Adj. R-squared: -0.022
Method: Least Squares F-statistic: 0.5262
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.476
Time: 18:55:21 Log-Likelihood: -112.82
No. Observations: 23 AIC: 229.6
Df Residuals: 21 BIC: 231.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 143.8771 88.734 1.621 0.120 -40.655 328.410
expression -8.5258 11.753 -0.725 0.476 -32.968 15.916
Omnibus: 4.190 Durbin-Watson: 2.404
Prob(Omnibus): 0.123 Jarque-Bera (JB): 2.084
Skew: 0.453 Prob(JB): 0.353
Kurtosis: 1.837 Cond. No. 95.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.291 0.095 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.571
Model: OLS Adj. R-squared: 0.454
Method: Least Squares F-statistic: 4.881
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0214
Time: 18:55:21 Log-Likelihood: -68.952
No. Observations: 15 AIC: 145.9
Df Residuals: 11 BIC: 148.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 276.3484 138.849 1.990 0.072 -29.256 581.953
C(dose)[T.1] 162.0318 374.209 0.433 0.673 -661.596 985.660
expression -24.2925 16.098 -1.509 0.159 -59.724 11.139
expression:C(dose)[T.1] -13.3167 43.676 -0.305 0.766 -109.448 82.814
Omnibus: 7.393 Durbin-Watson: 0.791
Prob(Omnibus): 0.025 Jarque-Bera (JB): 4.002
Skew: -1.087 Prob(JB): 0.135
Kurtosis: 4.295 Cond. No. 528.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.567
Model: OLS Adj. R-squared: 0.495
Method: Least Squares F-statistic: 7.870
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00655
Time: 18:55:21 Log-Likelihood: -69.015
No. Observations: 15 AIC: 144.0
Df Residuals: 12 BIC: 146.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 291.9063 124.157 2.351 0.037 21.392 562.421
C(dose)[T.1] 48.0228 13.958 3.440 0.005 17.610 78.435
expression -26.1015 14.388 -1.814 0.095 -57.450 5.247
Omnibus: 5.939 Durbin-Watson: 0.819
Prob(Omnibus): 0.051 Jarque-Bera (JB): 3.023
Skew: -1.003 Prob(JB): 0.221
Kurtosis: 3.902 Cond. No. 156.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 18:55:21 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.141
Model: OLS Adj. R-squared: 0.075
Method: Least Squares F-statistic: 2.129
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.168
Time: 18:55:21 Log-Likelihood: -74.163
No. Observations: 15 AIC: 152.3
Df Residuals: 13 BIC: 153.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 337.1947 167.173 2.017 0.065 -23.961 698.350
expression -28.3958 19.462 -1.459 0.168 -70.440 13.649
Omnibus: 2.967 Durbin-Watson: 1.921
Prob(Omnibus): 0.227 Jarque-Bera (JB): 1.254
Skew: 0.274 Prob(JB): 0.534
Kurtosis: 1.694 Cond. No. 155.