AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.997 0.173 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.696
Model: OLS Adj. R-squared: 0.648
Method: Least Squares F-statistic: 14.50
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.75e-05
Time: 22:45:15 Log-Likelihood: -99.409
No. Observations: 23 AIC: 206.8
Df Residuals: 19 BIC: 211.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 33.2727 49.507 0.672 0.510 -70.347 136.892
C(dose)[T.1] -16.6941 74.082 -0.225 0.824 -171.750 138.362
expression 3.5840 8.417 0.426 0.675 -14.033 21.201
expression:C(dose)[T.1] 12.4761 12.821 0.973 0.343 -14.358 39.310
Omnibus: 2.039 Durbin-Watson: 1.906
Prob(Omnibus): 0.361 Jarque-Bera (JB): 1.732
Skew: 0.566 Prob(JB): 0.421
Kurtosis: 2.273 Cond. No. 133.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.681
Model: OLS Adj. R-squared: 0.649
Method: Least Squares F-statistic: 21.34
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.09e-05
Time: 22:45:15 Log-Likelihood: -99.968
No. Observations: 23 AIC: 205.9
Df Residuals: 20 BIC: 209.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 1.8620 37.487 0.050 0.961 -76.335 80.059
C(dose)[T.1] 54.9260 8.437 6.510 0.000 37.326 72.526
expression 8.9611 6.341 1.413 0.173 -4.265 22.187
Omnibus: 1.983 Durbin-Watson: 2.146
Prob(Omnibus): 0.371 Jarque-Bera (JB): 1.418
Skew: 0.393 Prob(JB): 0.492
Kurtosis: 2.072 Cond. No. 53.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:45:16 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.043
Method: Least Squares F-statistic: 0.1021
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.752
Time: 22:45:16 Log-Likelihood: -113.05
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 59.7925 62.762 0.953 0.352 -70.728 190.312
expression 3.4612 10.830 0.320 0.752 -19.062 25.984
Omnibus: 3.937 Durbin-Watson: 2.538
Prob(Omnibus): 0.140 Jarque-Bera (JB): 1.684
Skew: 0.287 Prob(JB): 0.431
Kurtosis: 1.805 Cond. No. 52.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.167 0.690 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.517
Model: OLS Adj. R-squared: 0.385
Method: Least Squares F-statistic: 3.925
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0396
Time: 22:45:16 Log-Likelihood: -69.842
No. Observations: 15 AIC: 147.7
Df Residuals: 11 BIC: 150.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 95.5176 61.580 1.551 0.149 -40.020 231.055
C(dose)[T.1] -52.3262 89.045 -0.588 0.569 -248.313 143.661
expression -4.9647 10.701 -0.464 0.652 -28.519 18.589
expression:C(dose)[T.1] 19.0626 16.215 1.176 0.265 -16.626 54.751
Omnibus: 1.619 Durbin-Watson: 0.767
Prob(Omnibus): 0.445 Jarque-Bera (JB): 1.152
Skew: -0.448 Prob(JB): 0.562
Kurtosis: 1.980 Cond. No. 85.1

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.456
Model: OLS Adj. R-squared: 0.366
Method: Least Squares F-statistic: 5.036
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0258
Time: 22:45:16 Log-Likelihood: -70.729
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 48.5405 47.595 1.020 0.328 -55.161 152.242
C(dose)[T.1] 50.6952 16.055 3.158 0.008 15.713 85.677
expression 3.3384 8.167 0.409 0.690 -14.456 21.132
Omnibus: 2.464 Durbin-Watson: 0.695
Prob(Omnibus): 0.292 Jarque-Bera (JB): 1.857
Skew: -0.804 Prob(JB): 0.395
Kurtosis: 2.381 Cond. No. 35.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:45:16 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.072
Method: Least Squares F-statistic: 0.06087
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.809
Time: 22:45:16 Log-Likelihood: -75.265
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 107.4848 56.916 1.888 0.081 -15.474 230.444
expression -2.5503 10.336 -0.247 0.809 -24.881 19.780
Omnibus: 0.839 Durbin-Watson: 1.674
Prob(Omnibus): 0.657 Jarque-Bera (JB): 0.666
Skew: 0.077 Prob(JB): 0.717
Kurtosis: 1.979 Cond. No. 31.9