AIM Score vs. Gene Expression 
		Full X range:
		
		 
			
		
		Auto X range:
		
		 
		
		
		
		Group Comparisons: Boxplots
		
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.130  |   0.722  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.652 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.597 | 
  | Method: |              Least Squares |     F-statistic:        |     11.84 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  0.000133 | 
  | Time: |                  09:55:38 |        Log-Likelihood:     |   -100.98 | 
  | No. Observations: |           23 |         AIC:                |     210.0 | 
  | Df Residuals: |               19 |         BIC:                |     214.5 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                    5.7358 |    149.002 |      0.038 |   0.970 |   -306.130   317.601 | 
  | C(dose)[T.1] |                79.1972 |    195.558 |      0.405 |   0.690 |   -330.110   488.504 | 
  | expression |                   5.9319 |     18.219 |      0.326 |   0.748 |    -32.200    44.064 | 
  | expression:C(dose)[T.1] |     -2.9600 |     24.663 |     -0.120 |   0.906 |    -54.581    48.661 | 
  | Omnibus: |         0.263 |    Durbin-Watson:      |     1.943 | 
  | Prob(Omnibus): |   0.877 |    Jarque-Bera (JB):   |     0.448 | 
  | Skew: |            0.027 |    Prob(JB):           |     0.799 | 
  | Kurtosis: |        2.318 |    Cond. No.           |      465. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.651 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.616 | 
  | Method: |              Least Squares |     F-statistic:        |     18.68 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  2.66e-05 | 
  | Time: |                  09:55:38 |        Log-Likelihood:     |   -100.99 | 
  | No. Observations: |           23 |         AIC:                |     208.0 | 
  | Df Residuals: |               20 |         BIC:                |     211.4 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        18.9342 |     98.030 |      0.193 |   0.849 |   -185.552   223.420 | 
  | C(dose)[T.1] |     55.7665 |     11.037 |      5.053 |   0.000 |     32.743    78.790 | 
  | expression |        4.3167 |     11.974 |      0.361 |   0.722 |    -20.660    29.293 | 
  | Omnibus: |         0.113 |    Durbin-Watson:      |     1.922 | 
  | Prob(Omnibus): |   0.945 |    Jarque-Bera (JB):   |     0.337 | 
  | Skew: |            0.027 |    Prob(JB):           |     0.845 | 
  | Kurtosis: |        2.410 |    Cond. No.           |      181. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.649 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.632 | 
  | Method: |              Least Squares |     F-statistic:        |     38.84 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  3.51e-06 | 
  | Time: |                  09:55:38 |        Log-Likelihood:     |   -101.06 | 
  | No. Observations: |           23 |         AIC:                |     206.1 | 
  | Df Residuals: |               21 |         BIC:                |     208.4 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        54.2083 |      5.919 |      9.159 |   0.000 |     41.900    66.517 | 
  | C(dose)[T.1] |     53.3371 |      8.558 |      6.232 |   0.000 |     35.539    71.135 | 
  | Omnibus: |         0.322 |    Durbin-Watson:      |     1.888 | 
  | Prob(Omnibus): |   0.851 |    Jarque-Bera (JB):   |     0.485 | 
  | Skew: |            0.060 |    Prob(JB):           |     0.785 | 
  | Kurtosis: |        2.299 |    Cond. No.           |      2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.206 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.168 | 
  | Method: |              Least Squares |     F-statistic:        |     5.457 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0295 |  
  | Time: |                  09:55:38 |        Log-Likelihood:     |   -110.45 | 
  | No. Observations: |           23 |         AIC:                |     224.9 | 
  | Df Residuals: |               21 |         BIC:                |     227.2 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     337.4805 |    110.529 |      3.053 |   0.006 |    107.623   567.338 | 
  | expression |    -32.6186 |     13.963 |     -2.336 |   0.029 |    -61.657    -3.581 | 
  | Omnibus: |         1.138 |    Durbin-Watson:      |     2.067 | 
  | Prob(Omnibus): |   0.566 |    Jarque-Bera (JB):   |     1.068 | 
  | Skew: |            0.402 |    Prob(JB):           |     0.586 | 
  | Kurtosis: |        2.315 |    Cond. No.           |      138. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  2.687  |   0.127  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.551 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.429 | 
  | Method: |              Least Squares |     F-statistic:        |     4.506 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0270 |  
  | Time: |                  09:55:38 |        Log-Likelihood:     |   -69.289 | 
  | No. Observations: |           15 |         AIC:                |     146.6 | 
  | Df Residuals: |               11 |         BIC:                |     149.4 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  342.0526 |    512.371 |      0.668 |   0.518 |   -785.668  1469.773 | 
  | C(dose)[T.1] |               141.8460 |    568.498 |      0.250 |   0.808 |  -1109.409  1393.101 | 
  | expression |                 -31.0424 |     57.903 |     -0.536 |   0.603 |   -158.487    96.402 | 
  | expression:C(dose)[T.1] |    -13.3941 |     65.110 |     -0.206 |   0.841 |   -156.701   129.913 | 
  | Omnibus: |         0.301 |    Durbin-Watson:      |     0.801 | 
  | Prob(Omnibus): |   0.860 |    Jarque-Bera (JB):   |     0.458 | 
  | Skew: |           -0.170 |    Prob(JB):           |     0.796 | 
  | Kurtosis: |        2.215 |    Cond. No.           |      999. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.550 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.475 | 
  | Method: |              Least Squares |     F-statistic:        |     7.322 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00835 | 
  | Time: |                  09:55:38 |        Log-Likelihood:     |   -69.318 | 
  | No. Observations: |           15 |         AIC:                |     144.6 | 
  | Df Residuals: |               12 |         BIC:                |     146.8 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       435.7663 |    224.954 |      1.937 |   0.077 |    -54.367   925.899 | 
  | C(dose)[T.1] |     24.9813 |     20.510 |      1.218 |   0.247 |    -19.706    69.669 | 
  | expression |      -41.6355 |     25.401 |     -1.639 |   0.127 |    -96.979    13.708 | 
  | Omnibus: |         0.560 |    Durbin-Watson:      |     0.804 | 
  | Prob(Omnibus): |   0.756 |    Jarque-Bera (JB):   |     0.595 | 
  | Skew: |           -0.196 |    Prob(JB):           |     0.743 | 
  | Kurtosis: |        2.107 |    Cond. No.           |      276. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.406 | 
  | Method: |              Least Squares |     F-statistic:        |     10.58 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00629 | 
  | Time: |                  09:55:38 |        Log-Likelihood:     |   -70.833 | 
  | No. Observations: |           15 |         AIC:                |     145.7 | 
  | Df Residuals: |               13 |         BIC:                |     147.1 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        67.4286 |     11.044 |      6.106 |   0.000 |     43.570    91.287 | 
  | C(dose)[T.1] |     49.1964 |     15.122 |      3.253 |   0.006 |     16.527    81.866 | 
  | Omnibus: |         2.713 |    Durbin-Watson:      |     0.810 | 
  | Prob(Omnibus): |   0.258 |    Jarque-Bera (JB):   |     1.868 | 
  | Skew: |           -0.843 |    Prob(JB):           |     0.393 | 
  | Kurtosis: |        2.619 |    Cond. No.           |      2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.494 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.455 | 
  | Method: |              Least Squares |     F-statistic:        |     12.69 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00348 | 
  | Time: |                  09:55:38 |        Log-Likelihood:     |   -70.192 | 
  | No. Observations: |           15 |         AIC:                |     144.4 | 
  | Df Residuals: |               13 |         BIC:                |     145.8 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     639.3224 |    153.356 |      4.169 |   0.001 |    308.017   970.627 | 
  | expression |    -63.9200 |     17.945 |     -3.562 |   0.003 |   -102.687   -25.153 | 
  | Omnibus: |         2.206 |    Durbin-Watson:      |     1.170 | 
  | Prob(Omnibus): |   0.332 |    Jarque-Bera (JB):   |     0.921 | 
  | Skew: |            0.600 |    Prob(JB):           |     0.631 | 
  | Kurtosis: |        3.186 |    Cond. No.           |      184. |