AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.130 | 0.722 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.597 |
Method: | Least Squares | F-statistic: | 11.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000133 |
Time: | 05:07:08 | Log-Likelihood: | -100.98 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 5.7358 | 149.002 | 0.038 | 0.970 | -306.130 317.601 |
C(dose)[T.1] | 79.1972 | 195.558 | 0.405 | 0.690 | -330.110 488.504 |
expression | 5.9319 | 18.219 | 0.326 | 0.748 | -32.200 44.064 |
expression:C(dose)[T.1] | -2.9600 | 24.663 | -0.120 | 0.906 | -54.581 48.661 |
Omnibus: | 0.263 | Durbin-Watson: | 1.943 |
Prob(Omnibus): | 0.877 | Jarque-Bera (JB): | 0.448 |
Skew: | 0.027 | Prob(JB): | 0.799 |
Kurtosis: | 2.318 | Cond. No. | 465. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.68 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.66e-05 |
Time: | 05:07:08 | Log-Likelihood: | -100.99 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 18.9342 | 98.030 | 0.193 | 0.849 | -185.552 223.420 |
C(dose)[T.1] | 55.7665 | 11.037 | 5.053 | 0.000 | 32.743 78.790 |
expression | 4.3167 | 11.974 | 0.361 | 0.722 | -20.660 29.293 |
Omnibus: | 0.113 | Durbin-Watson: | 1.922 |
Prob(Omnibus): | 0.945 | Jarque-Bera (JB): | 0.337 |
Skew: | 0.027 | Prob(JB): | 0.845 |
Kurtosis: | 2.410 | Cond. No. | 181. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:07:09 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.206 |
Model: | OLS | Adj. R-squared: | 0.168 |
Method: | Least Squares | F-statistic: | 5.457 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0295 |
Time: | 05:07:09 | Log-Likelihood: | -110.45 |
No. Observations: | 23 | AIC: | 224.9 |
Df Residuals: | 21 | BIC: | 227.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 337.4805 | 110.529 | 3.053 | 0.006 | 107.623 567.338 |
expression | -32.6186 | 13.963 | -2.336 | 0.029 | -61.657 -3.581 |
Omnibus: | 1.138 | Durbin-Watson: | 2.067 |
Prob(Omnibus): | 0.566 | Jarque-Bera (JB): | 1.068 |
Skew: | 0.402 | Prob(JB): | 0.586 |
Kurtosis: | 2.315 | Cond. No. | 138. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.687 | 0.127 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.551 |
Model: | OLS | Adj. R-squared: | 0.429 |
Method: | Least Squares | F-statistic: | 4.506 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0270 |
Time: | 05:07:09 | Log-Likelihood: | -69.289 |
No. Observations: | 15 | AIC: | 146.6 |
Df Residuals: | 11 | BIC: | 149.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 342.0526 | 512.371 | 0.668 | 0.518 | -785.668 1469.773 |
C(dose)[T.1] | 141.8460 | 568.498 | 0.250 | 0.808 | -1109.409 1393.101 |
expression | -31.0424 | 57.903 | -0.536 | 0.603 | -158.487 96.402 |
expression:C(dose)[T.1] | -13.3941 | 65.110 | -0.206 | 0.841 | -156.701 129.913 |
Omnibus: | 0.301 | Durbin-Watson: | 0.801 |
Prob(Omnibus): | 0.860 | Jarque-Bera (JB): | 0.458 |
Skew: | -0.170 | Prob(JB): | 0.796 |
Kurtosis: | 2.215 | Cond. No. | 999. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.550 |
Model: | OLS | Adj. R-squared: | 0.475 |
Method: | Least Squares | F-statistic: | 7.322 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00835 |
Time: | 05:07:09 | Log-Likelihood: | -69.318 |
No. Observations: | 15 | AIC: | 144.6 |
Df Residuals: | 12 | BIC: | 146.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 435.7663 | 224.954 | 1.937 | 0.077 | -54.367 925.899 |
C(dose)[T.1] | 24.9813 | 20.510 | 1.218 | 0.247 | -19.706 69.669 |
expression | -41.6355 | 25.401 | -1.639 | 0.127 | -96.979 13.708 |
Omnibus: | 0.560 | Durbin-Watson: | 0.804 |
Prob(Omnibus): | 0.756 | Jarque-Bera (JB): | 0.595 |
Skew: | -0.196 | Prob(JB): | 0.743 |
Kurtosis: | 2.107 | Cond. No. | 276. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:07:09 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.494 |
Model: | OLS | Adj. R-squared: | 0.455 |
Method: | Least Squares | F-statistic: | 12.69 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00348 |
Time: | 05:07:09 | Log-Likelihood: | -70.192 |
No. Observations: | 15 | AIC: | 144.4 |
Df Residuals: | 13 | BIC: | 145.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 639.3224 | 153.356 | 4.169 | 0.001 | 308.017 970.627 |
expression | -63.9200 | 17.945 | -3.562 | 0.003 | -102.687 -25.153 |
Omnibus: | 2.206 | Durbin-Watson: | 1.170 |
Prob(Omnibus): | 0.332 | Jarque-Bera (JB): | 0.921 |
Skew: | 0.600 | Prob(JB): | 0.631 |
Kurtosis: | 3.186 | Cond. No. | 184. |