AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.022 | 0.884 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.596 |
Method: | Least Squares | F-statistic: | 11.80 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000137 |
Time: | 04:24:43 | Log-Likelihood: | -101.01 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -24.9353 | 264.700 | -0.094 | 0.926 | -578.959 529.088 |
C(dose)[T.1] | 139.7174 | 328.585 | 0.425 | 0.675 | -548.019 827.453 |
expression | 9.4309 | 31.534 | 0.299 | 0.768 | -56.569 75.431 |
expression:C(dose)[T.1] | -10.2702 | 38.776 | -0.265 | 0.794 | -91.430 70.890 |
Omnibus: | 0.216 | Durbin-Watson: | 1.962 |
Prob(Omnibus): | 0.897 | Jarque-Bera (JB): | 0.414 |
Skew: | 0.111 | Prob(JB): | 0.813 |
Kurtosis: | 2.381 | Cond. No. | 881. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.53 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.80e-05 |
Time: | 04:24:43 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 32.0615 | 150.503 | 0.213 | 0.833 | -281.883 346.006 |
C(dose)[T.1] | 52.7291 | 9.689 | 5.442 | 0.000 | 32.519 72.939 |
expression | 2.6391 | 17.920 | 0.147 | 0.884 | -34.741 40.019 |
Omnibus: | 0.331 | Durbin-Watson: | 1.916 |
Prob(Omnibus): | 0.847 | Jarque-Bera (JB): | 0.493 |
Skew: | 0.095 | Prob(JB): | 0.781 |
Kurtosis: | 2.308 | Cond. No. | 297. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:24:43 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.130 |
Model: | OLS | Adj. R-squared: | 0.089 |
Method: | Least Squares | F-statistic: | 3.145 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0906 |
Time: | 04:24:43 | Log-Likelihood: | -111.50 |
No. Observations: | 23 | AIC: | 227.0 |
Df Residuals: | 21 | BIC: | 229.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -296.0368 | 211.975 | -1.397 | 0.177 | -736.862 144.788 |
expression | 44.1953 | 24.919 | 1.774 | 0.091 | -7.627 96.018 |
Omnibus: | 1.919 | Durbin-Watson: | 2.482 |
Prob(Omnibus): | 0.383 | Jarque-Bera (JB): | 1.668 |
Skew: | 0.584 | Prob(JB): | 0.434 |
Kurtosis: | 2.387 | Cond. No. | 272. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.036 | 0.179 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.583 |
Model: | OLS | Adj. R-squared: | 0.469 |
Method: | Least Squares | F-statistic: | 5.118 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0186 |
Time: | 04:24:43 | Log-Likelihood: | -68.747 |
No. Observations: | 15 | AIC: | 145.5 |
Df Residuals: | 11 | BIC: | 148.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 0.4416 | 370.871 | 0.001 | 0.999 | -815.841 816.724 |
C(dose)[T.1] | -572.1509 | 522.690 | -1.095 | 0.297 | -1722.584 578.282 |
expression | 6.9679 | 38.562 | 0.181 | 0.860 | -77.907 91.843 |
expression:C(dose)[T.1] | 64.8840 | 54.444 | 1.192 | 0.258 | -54.948 184.715 |
Omnibus: | 1.893 | Durbin-Watson: | 0.604 |
Prob(Omnibus): | 0.388 | Jarque-Bera (JB): | 1.434 |
Skew: | -0.700 | Prob(JB): | 0.488 |
Kurtosis: | 2.420 | Cond. No. | 945. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.529 |
Model: | OLS | Adj. R-squared: | 0.450 |
Method: | Least Squares | F-statistic: | 6.732 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0110 |
Time: | 04:24:43 | Log-Likelihood: | -69.658 |
No. Observations: | 15 | AIC: | 145.3 |
Df Residuals: | 12 | BIC: | 147.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -312.4870 | 266.458 | -1.173 | 0.264 | -893.048 268.074 |
C(dose)[T.1] | 50.5282 | 14.583 | 3.465 | 0.005 | 18.754 82.302 |
expression | 39.5185 | 27.695 | 1.427 | 0.179 | -20.823 99.860 |
Omnibus: | 3.363 | Durbin-Watson: | 0.643 |
Prob(Omnibus): | 0.186 | Jarque-Bera (JB): | 1.705 |
Skew: | -0.535 | Prob(JB): | 0.426 |
Kurtosis: | 1.742 | Cond. No. | 357. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:24:43 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.057 |
Model: | OLS | Adj. R-squared: | -0.015 |
Method: | Least Squares | F-statistic: | 0.7898 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.390 |
Time: | 04:24:43 | Log-Likelihood: | -74.858 |
No. Observations: | 15 | AIC: | 153.7 |
Df Residuals: | 13 | BIC: | 155.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -226.6124 | 360.512 | -0.629 | 0.541 | -1005.452 552.227 |
expression | 33.3776 | 37.556 | 0.889 | 0.390 | -47.758 114.513 |
Omnibus: | 0.318 | Durbin-Watson: | 1.721 |
Prob(Omnibus): | 0.853 | Jarque-Bera (JB): | 0.460 |
Skew: | -0.011 | Prob(JB): | 0.795 |
Kurtosis: | 2.143 | Cond. No. | 355. |