AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.121 0.731 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.597
Method: Least Squares F-statistic: 11.88
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000131
Time: 04:52:51 Log-Likelihood: -100.96
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -11.4215 165.156 -0.069 0.946 -357.098 334.255
C(dose)[T.1] 103.3372 198.223 0.521 0.608 -311.549 518.223
expression 9.4047 23.650 0.398 0.695 -40.095 58.905
expression:C(dose)[T.1] -7.1411 28.469 -0.251 0.805 -66.727 52.445
Omnibus: 0.826 Durbin-Watson: 1.861
Prob(Omnibus): 0.662 Jarque-Bera (JB): 0.713
Skew: 0.000 Prob(JB): 0.700
Kurtosis: 2.137 Cond. No. 444.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.67
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.67e-05
Time: 04:52:51 Log-Likelihood: -100.99
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 22.9699 89.897 0.256 0.801 -164.553 210.493
C(dose)[T.1] 53.6662 8.794 6.102 0.000 35.322 72.011
expression 4.4764 12.853 0.348 0.731 -22.334 31.287
Omnibus: 0.815 Durbin-Watson: 1.872
Prob(Omnibus): 0.665 Jarque-Bera (JB): 0.714
Skew: 0.054 Prob(JB): 0.700
Kurtosis: 2.144 Cond. No. 146.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:52:52 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.046
Method: Least Squares F-statistic: 0.03507
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.853
Time: 04:52:52 Log-Likelihood: -113.09
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 107.1495 146.660 0.731 0.473 -197.846 412.145
expression -3.9509 21.097 -0.187 0.853 -47.824 39.923
Omnibus: 3.426 Durbin-Watson: 2.447
Prob(Omnibus): 0.180 Jarque-Bera (JB): 1.593
Skew: 0.289 Prob(JB): 0.451
Kurtosis: 1.847 Cond. No. 144.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.016 0.902 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.492
Model: OLS Adj. R-squared: 0.354
Method: Least Squares F-statistic: 3.553
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0512
Time: 04:52:52 Log-Likelihood: -70.219
No. Observations: 15 AIC: 148.4
Df Residuals: 11 BIC: 151.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 145.5958 99.932 1.457 0.173 -74.352 365.544
C(dose)[T.1] -79.2838 134.335 -0.590 0.567 -374.954 216.386
expression -12.8083 16.265 -0.787 0.448 -48.608 22.991
expression:C(dose)[T.1] 21.3839 22.256 0.961 0.357 -27.601 70.369
Omnibus: 2.498 Durbin-Watson: 1.056
Prob(Omnibus): 0.287 Jarque-Bera (JB): 1.544
Skew: -0.779 Prob(JB): 0.462
Kurtosis: 2.788 Cond. No. 142.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.899
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0278
Time: 04:52:52 Log-Likelihood: -70.823
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 75.8929 68.507 1.108 0.290 -73.371 225.157
C(dose)[T.1] 48.8693 15.944 3.065 0.010 14.129 83.609
expression -1.3870 11.066 -0.125 0.902 -25.499 22.725
Omnibus: 2.626 Durbin-Watson: 0.806
Prob(Omnibus): 0.269 Jarque-Bera (JB): 1.838
Skew: -0.832 Prob(JB): 0.399
Kurtosis: 2.582 Cond. No. 54.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:52:52 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.019
Model: OLS Adj. R-squared: -0.057
Method: Least Squares F-statistic: 0.2455
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.629
Time: 04:52:52 Log-Likelihood: -75.160
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 135.1412 84.313 1.603 0.133 -47.006 317.288
expression -6.9390 14.005 -0.495 0.629 -37.195 23.317
Omnibus: 1.155 Durbin-Watson: 1.565
Prob(Omnibus): 0.561 Jarque-Bera (JB): 0.796
Skew: 0.184 Prob(JB): 0.672
Kurtosis: 1.933 Cond. No. 51.8