AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.146 | 0.297 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.678 |
Model: | OLS | Adj. R-squared: | 0.628 |
Method: | Least Squares | F-statistic: | 13.36 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 6.34e-05 |
Time: | 11:42:53 | Log-Likelihood: | -100.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 19 | BIC: | 212.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 115.6450 | 156.378 | 0.740 | 0.469 | -211.659 442.949 |
C(dose)[T.1] | 259.1904 | 263.912 | 0.982 | 0.338 | -293.184 811.565 |
expression | -6.9930 | 17.787 | -0.393 | 0.699 | -44.221 30.235 |
expression:C(dose)[T.1] | -23.5785 | 30.118 | -0.783 | 0.443 | -86.616 39.459 |
Omnibus: | 0.215 | Durbin-Watson: | 1.621 |
Prob(Omnibus): | 0.898 | Jarque-Bera (JB): | 0.416 |
Skew: | -0.082 | Prob(JB): | 0.812 |
Kurtosis: | 2.362 | Cond. No. | 663. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.668 |
Model: | OLS | Adj. R-squared: | 0.635 |
Method: | Least Squares | F-statistic: | 20.13 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 1.62e-05 |
Time: | 11:42:53 | Log-Likelihood: | -100.42 |
No. Observations: | 23 | AIC: | 206.8 |
Df Residuals: | 20 | BIC: | 210.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 187.8918 | 125.017 | 1.503 | 0.148 | -72.889 448.672 |
C(dose)[T.1] | 52.6926 | 8.550 | 6.163 | 0.000 | 34.857 70.528 |
expression | -15.2164 | 14.214 | -1.071 | 0.297 | -44.867 14.434 |
Omnibus: | 0.899 | Durbin-Watson: | 1.508 |
Prob(Omnibus): | 0.638 | Jarque-Bera (JB): | 0.740 |
Skew: | 0.002 | Prob(JB): | 0.691 |
Kurtosis: | 2.121 | Cond. No. | 261. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 11:42:53 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.038 |
Model: | OLS | Adj. R-squared: | -0.008 |
Method: | Least Squares | F-statistic: | 0.8239 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.374 |
Time: | 11:42:53 | Log-Likelihood: | -112.66 |
No. Observations: | 23 | AIC: | 229.3 |
Df Residuals: | 21 | BIC: | 231.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 267.1576 | 206.627 | 1.293 | 0.210 | -162.547 696.862 |
expression | -21.3846 | 23.560 | -0.908 | 0.374 | -70.380 27.611 |
Omnibus: | 3.793 | Durbin-Watson: | 2.333 |
Prob(Omnibus): | 0.150 | Jarque-Bera (JB): | 1.526 |
Skew: | 0.190 | Prob(JB): | 0.466 |
Kurtosis: | 1.797 | Cond. No. | 259. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.021 | 0.332 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.648 |
Model: | OLS | Adj. R-squared: | 0.552 |
Method: | Least Squares | F-statistic: | 6.747 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.00759 |
Time: | 11:42:53 | Log-Likelihood: | -67.471 |
No. Observations: | 15 | AIC: | 142.9 |
Df Residuals: | 11 | BIC: | 145.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -114.6308 | 427.613 | -0.268 | 0.794 | -1055.801 826.539 |
C(dose)[T.1] | 1576.8420 | 694.769 | 2.270 | 0.044 | 47.665 3106.019 |
expression | 18.6598 | 43.816 | 0.426 | 0.678 | -77.779 115.099 |
expression:C(dose)[T.1] | -158.5321 | 71.826 | -2.207 | 0.049 | -316.621 -0.444 |
Omnibus: | 3.462 | Durbin-Watson: | 0.918 |
Prob(Omnibus): | 0.177 | Jarque-Bera (JB): | 1.691 |
Skew: | -0.810 | Prob(JB): | 0.429 |
Kurtosis: | 3.288 | Cond. No. | 1.30e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.492 |
Model: | OLS | Adj. R-squared: | 0.407 |
Method: | Least Squares | F-statistic: | 5.810 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0172 |
Time: | 11:42:53 | Log-Likelihood: | -70.221 |
No. Observations: | 15 | AIC: | 146.4 |
Df Residuals: | 12 | BIC: | 148.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 460.9795 | 389.733 | 1.183 | 0.260 | -388.175 1310.134 |
C(dose)[T.1] | 43.6842 | 16.065 | 2.719 | 0.019 | 8.681 78.687 |
expression | -40.3362 | 39.929 | -1.010 | 0.332 | -127.334 46.661 |
Omnibus: | 4.002 | Durbin-Watson: | 0.944 |
Prob(Omnibus): | 0.135 | Jarque-Bera (JB): | 2.768 |
Skew: | -1.042 | Prob(JB): | 0.251 |
Kurtosis: | 2.702 | Cond. No. | 507. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.00629 |
Time: | 11:42:53 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.179 |
Model: | OLS | Adj. R-squared: | 0.116 |
Method: | Least Squares | F-statistic: | 2.833 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.116 |
Time: | 11:42:53 | Log-Likelihood: | -73.821 |
No. Observations: | 15 | AIC: | 151.6 |
Df Residuals: | 13 | BIC: | 153.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 841.3886 | 444.296 | 1.894 | 0.081 | -118.455 1801.232 |
expression | -77.2130 | 45.870 | -1.683 | 0.116 | -176.309 21.883 |
Omnibus: | 2.460 | Durbin-Watson: | 1.945 |
Prob(Omnibus): | 0.292 | Jarque-Bera (JB): | 1.455 |
Skew: | -0.759 | Prob(JB): | 0.483 |
Kurtosis: | 2.846 | Cond. No. | 472. |