AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.505 0.486 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.604
Method: Least Squares F-statistic: 12.20
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000112
Time: 05:10:02 Log-Likelihood: -100.76
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 69.0054 46.387 1.488 0.153 -28.084 166.095
C(dose)[T.1] 62.3371 59.936 1.040 0.311 -63.110 187.784
expression -3.3216 10.321 -0.322 0.751 -24.924 18.281
expression:C(dose)[T.1] -2.2637 13.551 -0.167 0.869 -30.625 26.098
Omnibus: 0.186 Durbin-Watson: 1.730
Prob(Omnibus): 0.911 Jarque-Bera (JB): 0.393
Skew: -0.083 Prob(JB): 0.822
Kurtosis: 2.381 Cond. No. 84.2

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.21
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.21e-05
Time: 05:10:02 Log-Likelihood: -100.78
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 74.8559 29.670 2.523 0.020 12.966 136.746
C(dose)[T.1] 52.4372 8.753 5.991 0.000 34.178 70.696
expression -4.6349 6.523 -0.711 0.486 -18.242 8.972
Omnibus: 0.269 Durbin-Watson: 1.697
Prob(Omnibus): 0.874 Jarque-Bera (JB): 0.453
Skew: -0.086 Prob(JB): 0.797
Kurtosis: 2.334 Cond. No. 32.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:10:02 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.043
Model: OLS Adj. R-squared: -0.002
Method: Least Squares F-statistic: 0.9548
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.340
Time: 05:10:02 Log-Likelihood: -112.59
No. Observations: 23 AIC: 229.2
Df Residuals: 21 BIC: 231.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 124.5971 46.468 2.681 0.014 27.962 221.232
expression -10.2889 10.529 -0.977 0.340 -32.186 11.608
Omnibus: 2.880 Durbin-Watson: 2.510
Prob(Omnibus): 0.237 Jarque-Bera (JB): 1.378
Skew: 0.212 Prob(JB): 0.502
Kurtosis: 1.879 Cond. No. 30.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.101 0.173 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.537
Model: OLS Adj. R-squared: 0.411
Method: Least Squares F-statistic: 4.251
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0319
Time: 05:10:02 Log-Likelihood: -69.526
No. Observations: 15 AIC: 147.1
Df Residuals: 11 BIC: 149.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 173.9950 75.359 2.309 0.041 8.130 339.860
C(dose)[T.1] -20.8966 179.773 -0.116 0.910 -416.575 374.782
expression -19.4753 13.625 -1.429 0.181 -49.463 10.512
expression:C(dose)[T.1] 12.6262 33.485 0.377 0.713 -61.074 86.327
Omnibus: 3.021 Durbin-Watson: 1.270
Prob(Omnibus): 0.221 Jarque-Bera (JB): 1.721
Skew: -0.830 Prob(JB): 0.423
Kurtosis: 2.969 Cond. No. 157.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.531
Model: OLS Adj. R-squared: 0.453
Method: Least Squares F-statistic: 6.791
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0107
Time: 05:10:02 Log-Likelihood: -69.623
No. Observations: 15 AIC: 145.2
Df Residuals: 12 BIC: 147.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 162.5572 66.473 2.445 0.031 17.724 307.390
C(dose)[T.1] 46.6481 14.626 3.189 0.008 14.782 78.514
expression -17.3850 11.993 -1.450 0.173 -43.515 8.745
Omnibus: 2.931 Durbin-Watson: 1.246
Prob(Omnibus): 0.231 Jarque-Bera (JB): 1.671
Skew: -0.817 Prob(JB): 0.434
Kurtosis: 2.956 Cond. No. 51.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:10:03 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.133
Model: OLS Adj. R-squared: 0.067
Method: Least Squares F-statistic: 1.999
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.181
Time: 05:10:03 Log-Likelihood: -74.227
No. Observations: 15 AIC: 152.5
Df Residuals: 13 BIC: 153.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 212.2338 84.397 2.515 0.026 29.906 394.562
expression -21.9825 15.549 -1.414 0.181 -55.573 11.608
Omnibus: 3.462 Durbin-Watson: 2.126
Prob(Omnibus): 0.177 Jarque-Bera (JB): 1.443
Skew: 0.366 Prob(JB): 0.486
Kurtosis: 1.668 Cond. No. 50.0