AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.889 0.039 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.719
Model: OLS Adj. R-squared: 0.674
Method: Least Squares F-statistic: 16.17
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.84e-05
Time: 23:01:28 Log-Likelihood: -98.527
No. Observations: 23 AIC: 205.1
Df Residuals: 19 BIC: 209.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -21.8143 46.389 -0.470 0.644 -118.908 75.279
C(dose)[T.1] 68.5171 63.809 1.074 0.296 -65.036 202.070
expression 12.8090 7.759 1.651 0.115 -3.432 29.050
expression:C(dose)[T.1] -2.0386 10.922 -0.187 0.854 -24.900 20.822
Omnibus: 0.211 Durbin-Watson: 1.576
Prob(Omnibus): 0.900 Jarque-Bera (JB): 0.015
Skew: -0.040 Prob(JB): 0.993
Kurtosis: 2.905 Cond. No. 124.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.718
Model: OLS Adj. R-squared: 0.690
Method: Least Squares F-statistic: 25.46
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.18e-06
Time: 23:01:28 Log-Likelihood: -98.548
No. Observations: 23 AIC: 203.1
Df Residuals: 20 BIC: 206.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -15.7079 32.084 -0.490 0.630 -82.633 51.218
C(dose)[T.1] 56.7063 8.008 7.081 0.000 40.002 73.410
expression 11.7801 5.328 2.211 0.039 0.667 22.893
Omnibus: 0.245 Durbin-Watson: 1.596
Prob(Omnibus): 0.885 Jarque-Bera (JB): 0.004
Skew: 0.006 Prob(JB): 0.998
Kurtosis: 2.939 Cond. No. 49.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:01:28 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.011
Model: OLS Adj. R-squared: -0.036
Method: Least Squares F-statistic: 0.2317
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.635
Time: 23:01:28 Log-Likelihood: -112.98
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 53.0373 55.889 0.949 0.353 -63.191 169.266
expression 4.6013 9.559 0.481 0.635 -15.278 24.480
Omnibus: 2.962 Durbin-Watson: 2.516
Prob(Omnibus): 0.227 Jarque-Bera (JB): 1.521
Skew: 0.303 Prob(JB): 0.467
Kurtosis: 1.896 Cond. No. 46.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.322 0.153 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.558
Model: OLS Adj. R-squared: 0.437
Method: Least Squares F-statistic: 4.627
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0251
Time: 23:01:28 Log-Likelihood: -69.179
No. Observations: 15 AIC: 146.4
Df Residuals: 11 BIC: 149.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -50.3098 128.933 -0.390 0.704 -334.089 233.469
C(dose)[T.1] -146.1328 262.680 -0.556 0.589 -724.288 432.023
expression 17.9871 19.629 0.916 0.379 -25.215 61.190
expression:C(dose)[T.1] 26.6687 38.064 0.701 0.498 -57.110 110.448
Omnibus: 1.624 Durbin-Watson: 1.007
Prob(Omnibus): 0.444 Jarque-Bera (JB): 0.865
Skew: 0.018 Prob(JB): 0.649
Kurtosis: 1.824 Cond. No. 303.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.538
Model: OLS Adj. R-squared: 0.461
Method: Least Squares F-statistic: 6.991
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00971
Time: 23:01:28 Log-Likelihood: -69.506
No. Observations: 15 AIC: 145.0
Df Residuals: 12 BIC: 147.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -96.7297 108.235 -0.894 0.389 -332.554 139.094
C(dose)[T.1] 37.5353 16.313 2.301 0.040 1.992 73.079
expression 25.0788 16.457 1.524 0.153 -10.778 60.935
Omnibus: 0.744 Durbin-Watson: 0.871
Prob(Omnibus): 0.689 Jarque-Bera (JB): 0.685
Skew: -0.235 Prob(JB): 0.710
Kurtosis: 2.065 Cond. No. 105.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:01:28 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.334
Model: OLS Adj. R-squared: 0.283
Method: Least Squares F-statistic: 6.531
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0239
Time: 23:01:28 Log-Likelihood: -72.247
No. Observations: 15 AIC: 148.5
Df Residuals: 13 BIC: 149.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -197.3803 114.188 -1.729 0.108 -444.068 49.308
expression 42.8408 16.764 2.556 0.024 6.625 79.056
Omnibus: 1.373 Durbin-Watson: 1.521
Prob(Omnibus): 0.503 Jarque-Bera (JB): 0.918
Skew: 0.280 Prob(JB): 0.632
Kurtosis: 1.925 Cond. No. 95.8