AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.991 | 0.174 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.765 |
Model: | OLS | Adj. R-squared: | 0.728 |
Method: | Least Squares | F-statistic: | 20.61 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.41e-06 |
Time: | 04:13:22 | Log-Likelihood: | -96.454 |
No. Observations: | 23 | AIC: | 200.9 |
Df Residuals: | 19 | BIC: | 205.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 93.8006 | 252.521 | 0.371 | 0.714 | -434.732 622.333 |
C(dose)[T.1] | 1463.0419 | 537.256 | 2.723 | 0.013 | 338.553 2587.531 |
expression | -3.5965 | 22.934 | -0.157 | 0.877 | -51.598 44.405 |
expression:C(dose)[T.1] | -124.7594 | 47.850 | -2.607 | 0.017 | -224.910 -24.609 |
Omnibus: | 3.872 | Durbin-Watson: | 2.259 |
Prob(Omnibus): | 0.144 | Jarque-Bera (JB): | 2.567 |
Skew: | 0.813 | Prob(JB): | 0.277 |
Kurtosis: | 3.179 | Cond. No. | 1.92e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.681 |
Model: | OLS | Adj. R-squared: | 0.649 |
Method: | Least Squares | F-statistic: | 21.33 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.10e-05 |
Time: | 04:13:22 | Log-Likelihood: | -99.971 |
No. Observations: | 23 | AIC: | 205.9 |
Df Residuals: | 20 | BIC: | 209.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 409.3032 | 251.726 | 1.626 | 0.120 | -115.787 934.393 |
C(dose)[T.1] | 62.4550 | 10.569 | 5.909 | 0.000 | 40.408 84.501 |
expression | -32.2562 | 22.860 | -1.411 | 0.174 | -79.942 15.430 |
Omnibus: | 2.445 | Durbin-Watson: | 2.101 |
Prob(Omnibus): | 0.294 | Jarque-Bera (JB): | 1.230 |
Skew: | 0.156 | Prob(JB): | 0.541 |
Kurtosis: | 1.911 | Cond. No. | 678. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:13:22 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.124 |
Model: | OLS | Adj. R-squared: | 0.082 |
Method: | Least Squares | F-statistic: | 2.961 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.100 |
Time: | 04:13:22 | Log-Likelihood: | -111.59 |
No. Observations: | 23 | AIC: | 227.2 |
Df Residuals: | 21 | BIC: | 229.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -481.2225 | 326.071 | -1.476 | 0.155 | -1159.325 196.880 |
expression | 50.3367 | 29.254 | 1.721 | 0.100 | -10.501 111.174 |
Omnibus: | 1.739 | Durbin-Watson: | 2.131 |
Prob(Omnibus): | 0.419 | Jarque-Bera (JB): | 1.215 |
Skew: | 0.310 | Prob(JB): | 0.545 |
Kurtosis: | 2.060 | Cond. No. | 542. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.227 | 0.643 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.478 |
Model: | OLS | Adj. R-squared: | 0.335 |
Method: | Least Squares | F-statistic: | 3.352 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0592 |
Time: | 04:13:22 | Log-Likelihood: | -70.430 |
No. Observations: | 15 | AIC: | 148.9 |
Df Residuals: | 11 | BIC: | 151.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 392.5885 | 418.063 | 0.939 | 0.368 | -527.562 1312.739 |
C(dose)[T.1] | -266.7986 | 504.459 | -0.529 | 0.607 | -1377.105 843.508 |
expression | -33.2044 | 42.675 | -0.778 | 0.453 | -127.131 60.722 |
expression:C(dose)[T.1] | 32.2631 | 51.581 | 0.625 | 0.544 | -81.265 145.792 |
Omnibus: | 2.758 | Durbin-Watson: | 0.941 |
Prob(Omnibus): | 0.252 | Jarque-Bera (JB): | 1.861 |
Skew: | -0.846 | Prob(JB): | 0.394 |
Kurtosis: | 2.661 | Cond. No. | 900. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.459 |
Model: | OLS | Adj. R-squared: | 0.369 |
Method: | Least Squares | F-statistic: | 5.090 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0251 |
Time: | 04:13:22 | Log-Likelihood: | -70.693 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 176.3296 | 228.988 | 0.770 | 0.456 | -322.591 675.251 |
C(dose)[T.1] | 48.5745 | 15.648 | 3.104 | 0.009 | 14.481 82.668 |
expression | -11.1207 | 23.355 | -0.476 | 0.643 | -62.006 39.765 |
Omnibus: | 3.130 | Durbin-Watson: | 0.766 |
Prob(Omnibus): | 0.209 | Jarque-Bera (JB): | 2.169 |
Skew: | -0.913 | Prob(JB): | 0.338 |
Kurtosis: | 2.628 | Cond. No. | 291. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:13:22 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.025 |
Model: | OLS | Adj. R-squared: | -0.050 |
Method: | Least Squares | F-statistic: | 0.3271 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.577 |
Time: | 04:13:22 | Log-Likelihood: | -75.114 |
No. Observations: | 15 | AIC: | 154.2 |
Df Residuals: | 13 | BIC: | 155.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 261.3203 | 293.297 | 0.891 | 0.389 | -372.308 894.949 |
expression | -17.1726 | 30.025 | -0.572 | 0.577 | -82.037 47.691 |
Omnibus: | 1.125 | Durbin-Watson: | 1.569 |
Prob(Omnibus): | 0.570 | Jarque-Bera (JB): | 0.752 |
Skew: | 0.084 | Prob(JB): | 0.687 |
Kurtosis: | 1.916 | Cond. No. | 288. |