AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.382 0.049 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.734
Model: OLS Adj. R-squared: 0.692
Method: Least Squares F-statistic: 17.45
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.09e-05
Time: 04:40:46 Log-Likelihood: -97.887
No. Observations: 23 AIC: 203.8
Df Residuals: 19 BIC: 208.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 258.0013 93.904 2.748 0.013 61.459 454.544
C(dose)[T.1] -91.3103 107.261 -0.851 0.405 -315.809 133.189
expression -23.2289 10.686 -2.174 0.043 -45.594 -0.864
expression:C(dose)[T.1] 15.6180 12.576 1.242 0.229 -10.703 41.939
Omnibus: 0.606 Durbin-Watson: 1.921
Prob(Omnibus): 0.738 Jarque-Bera (JB): 0.229
Skew: -0.244 Prob(JB): 0.892
Kurtosis: 2.964 Cond. No. 330.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.712
Model: OLS Adj. R-squared: 0.683
Method: Least Squares F-statistic: 24.74
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.91e-06
Time: 04:40:46 Log-Likelihood: -98.784
No. Observations: 23 AIC: 203.6
Df Residuals: 20 BIC: 207.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 159.0713 50.394 3.157 0.005 53.951 264.191
C(dose)[T.1] 41.3592 9.789 4.225 0.000 20.939 61.779
expression -11.9526 5.710 -2.093 0.049 -23.863 -0.042
Omnibus: 0.887 Durbin-Watson: 2.090
Prob(Omnibus): 0.642 Jarque-Bera (JB): 0.325
Skew: -0.289 Prob(JB): 0.850
Kurtosis: 3.066 Cond. No. 108.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:40:46 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.429
Method: Least Squares F-statistic: 17.55
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000414
Time: 04:40:46 Log-Likelihood: -106.12
No. Observations: 23 AIC: 216.2
Df Residuals: 21 BIC: 218.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 295.8037 51.861 5.704 0.000 187.953 403.654
expression -26.0534 6.220 -4.189 0.000 -38.988 -13.119
Omnibus: 2.461 Durbin-Watson: 2.322
Prob(Omnibus): 0.292 Jarque-Bera (JB): 1.751
Skew: 0.487 Prob(JB): 0.417
Kurtosis: 2.062 Cond. No. 82.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.540 0.477 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.507
Model: OLS Adj. R-squared: 0.373
Method: Least Squares F-statistic: 3.776
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0438
Time: 04:40:46 Log-Likelihood: -69.990
No. Observations: 15 AIC: 148.0
Df Residuals: 11 BIC: 150.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 290.3223 195.194 1.487 0.165 -139.296 719.941
C(dose)[T.1] -174.0151 248.658 -0.700 0.499 -721.308 373.278
expression -27.1344 23.722 -1.144 0.277 -79.346 25.078
expression:C(dose)[T.1] 27.1750 30.794 0.882 0.396 -40.603 94.953
Omnibus: 2.007 Durbin-Watson: 1.149
Prob(Omnibus): 0.367 Jarque-Bera (JB): 1.239
Skew: -0.693 Prob(JB): 0.538
Kurtosis: 2.750 Cond. No. 362.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.472
Model: OLS Adj. R-squared: 0.385
Method: Least Squares F-statistic: 5.374
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0215
Time: 04:40:46 Log-Likelihood: -70.503
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 157.8533 123.613 1.277 0.226 -111.476 427.182
C(dose)[T.1] 44.9283 16.457 2.730 0.018 9.071 80.785
expression -11.0080 14.986 -0.735 0.477 -43.659 21.643
Omnibus: 3.549 Durbin-Watson: 0.852
Prob(Omnibus): 0.170 Jarque-Bera (JB): 2.064
Skew: -0.909 Prob(JB): 0.356
Kurtosis: 3.011 Cond. No. 132.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:40:46 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.145
Model: OLS Adj. R-squared: 0.079
Method: Least Squares F-statistic: 2.202
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.162
Time: 04:40:46 Log-Likelihood: -74.126
No. Observations: 15 AIC: 152.3
Df Residuals: 13 BIC: 153.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 297.4816 137.661 2.161 0.050 0.083 594.880
expression -25.4526 17.151 -1.484 0.162 -62.505 11.600
Omnibus: 2.151 Durbin-Watson: 1.387
Prob(Omnibus): 0.341 Jarque-Bera (JB): 1.055
Skew: 0.219 Prob(JB): 0.590
Kurtosis: 1.777 Cond. No. 119.