AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.795 | 0.110 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.698 |
Model: | OLS | Adj. R-squared: | 0.650 |
Method: | Least Squares | F-statistic: | 14.64 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.53e-05 |
Time: | 05:16:43 | Log-Likelihood: | -99.332 |
No. Observations: | 23 | AIC: | 206.7 |
Df Residuals: | 19 | BIC: | 211.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 179.2058 | 86.847 | 2.063 | 0.053 | -2.568 360.979 |
C(dose)[T.1] | -19.1864 | 101.569 | -0.189 | 0.852 | -231.773 193.401 |
expression | -16.8736 | 11.698 | -1.442 | 0.165 | -41.357 7.610 |
expression:C(dose)[T.1] | 8.7499 | 14.228 | 0.615 | 0.546 | -21.031 38.530 |
Omnibus: | 0.026 | Durbin-Watson: | 2.145 |
Prob(Omnibus): | 0.987 | Jarque-Bera (JB): | 0.087 |
Skew: | 0.009 | Prob(JB): | 0.958 |
Kurtosis: | 2.700 | Cond. No. | 243. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.692 |
Model: | OLS | Adj. R-squared: | 0.661 |
Method: | Least Squares | F-statistic: | 22.48 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.66e-06 |
Time: | 05:16:43 | Log-Likelihood: | -99.558 |
No. Observations: | 23 | AIC: | 205.1 |
Df Residuals: | 20 | BIC: | 208.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 135.3946 | 48.890 | 2.769 | 0.012 | 33.412 237.377 |
C(dose)[T.1] | 42.9419 | 10.302 | 4.168 | 0.000 | 21.452 64.432 |
expression | -10.9595 | 6.555 | -1.672 | 0.110 | -24.633 2.714 |
Omnibus: | 0.058 | Durbin-Watson: | 2.178 |
Prob(Omnibus): | 0.971 | Jarque-Bera (JB): | 0.088 |
Skew: | -0.061 | Prob(JB): | 0.957 |
Kurtosis: | 2.722 | Cond. No. | 86.0 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:16:43 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.425 |
Model: | OLS | Adj. R-squared: | 0.397 |
Method: | Least Squares | F-statistic: | 15.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000756 |
Time: | 05:16:43 | Log-Likelihood: | -106.75 |
No. Observations: | 23 | AIC: | 217.5 |
Df Residuals: | 21 | BIC: | 219.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 270.6043 | 48.798 | 5.545 | 0.000 | 169.124 372.084 |
expression | -27.4490 | 6.973 | -3.937 | 0.001 | -41.950 -12.949 |
Omnibus: | 3.439 | Durbin-Watson: | 2.590 |
Prob(Omnibus): | 0.179 | Jarque-Bera (JB): | 1.931 |
Skew: | 0.454 | Prob(JB): | 0.381 |
Kurtosis: | 1.908 | Cond. No. | 63.6 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.483 | 0.500 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.527 |
Model: | OLS | Adj. R-squared: | 0.398 |
Method: | Least Squares | F-statistic: | 4.085 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0355 |
Time: | 05:16:43 | Log-Likelihood: | -69.685 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 11 | BIC: | 150.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 396.1337 | 244.079 | 1.623 | 0.133 | -141.081 933.348 |
C(dose)[T.1] | -273.8942 | 276.669 | -0.990 | 0.343 | -882.839 335.051 |
expression | -47.5896 | 35.301 | -1.348 | 0.205 | -125.286 30.107 |
expression:C(dose)[T.1] | 46.7214 | 40.612 | 1.150 | 0.274 | -42.665 136.107 |
Omnibus: | 2.608 | Durbin-Watson: | 1.199 |
Prob(Omnibus): | 0.271 | Jarque-Bera (JB): | 1.474 |
Skew: | -0.767 | Prob(JB): | 0.479 |
Kurtosis: | 2.925 | Cond. No. | 369. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.470 |
Model: | OLS | Adj. R-squared: | 0.382 |
Method: | Least Squares | F-statistic: | 5.323 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0221 |
Time: | 05:16:43 | Log-Likelihood: | -70.537 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 152.3101 | 122.684 | 1.241 | 0.238 | -114.996 419.616 |
C(dose)[T.1] | 43.7922 | 17.282 | 2.534 | 0.026 | 6.139 81.446 |
expression | -12.2891 | 17.687 | -0.695 | 0.500 | -50.826 26.248 |
Omnibus: | 3.936 | Durbin-Watson: | 0.825 |
Prob(Omnibus): | 0.140 | Jarque-Bera (JB): | 2.273 |
Skew: | -0.953 | Prob(JB): | 0.321 |
Kurtosis: | 3.083 | Cond. No. | 109. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:16:43 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.187 |
Model: | OLS | Adj. R-squared: | 0.124 |
Method: | Least Squares | F-statistic: | 2.981 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.108 |
Time: | 05:16:43 | Log-Likelihood: | -73.752 |
No. Observations: | 15 | AIC: | 151.5 |
Df Residuals: | 13 | BIC: | 152.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 310.2659 | 125.787 | 2.467 | 0.028 | 38.520 582.012 |
expression | -32.4613 | 18.801 | -1.727 | 0.108 | -73.079 8.157 |
Omnibus: | 0.816 | Durbin-Watson: | 1.301 |
Prob(Omnibus): | 0.665 | Jarque-Bera (JB): | 0.696 |
Skew: | 0.198 | Prob(JB): | 0.706 |
Kurtosis: | 2.022 | Cond. No. | 93.9 |