AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.001 0.972 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.594
Method: Least Squares F-statistic: 11.74
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000141
Time: 04:34:51 Log-Likelihood: -101.04
No. Observations: 23 AIC: 210.1
Df Residuals: 19 BIC: 214.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 48.1141 45.233 1.064 0.301 -46.560 142.788
C(dose)[T.1] 64.9710 69.789 0.931 0.364 -81.098 211.040
expression 1.2665 9.311 0.136 0.893 -18.222 20.755
expression:C(dose)[T.1] -2.4043 14.286 -0.168 0.868 -32.304 27.496
Omnibus: 0.435 Durbin-Watson: 1.913
Prob(Omnibus): 0.805 Jarque-Bera (JB): 0.545
Skew: 0.036 Prob(JB): 0.761
Kurtosis: 2.249 Cond. No. 99.1

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.83e-05
Time: 04:34:51 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 53.0291 33.694 1.574 0.131 -17.255 123.313
C(dose)[T.1] 53.3232 8.778 6.074 0.000 35.012 71.634
expression 0.2451 6.888 0.036 0.972 -14.123 14.613
Omnibus: 0.308 Durbin-Watson: 1.887
Prob(Omnibus): 0.857 Jarque-Bera (JB): 0.477
Skew: 0.057 Prob(JB): 0.788
Kurtosis: 2.304 Cond. No. 39.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:34:51 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.046
Method: Least Squares F-statistic: 0.03462
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.854
Time: 04:34:51 Log-Likelihood: -113.09
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 69.5198 55.281 1.258 0.222 -45.444 184.484
expression 2.1074 11.327 0.186 0.854 -21.448 25.662
Omnibus: 2.921 Durbin-Watson: 2.476
Prob(Omnibus): 0.232 Jarque-Bera (JB): 1.489
Skew: 0.289 Prob(JB): 0.475
Kurtosis: 1.895 Cond. No. 39.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.575 0.463 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.589
Model: OLS Adj. R-squared: 0.477
Method: Least Squares F-statistic: 5.263
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0170
Time: 04:34:51 Log-Likelihood: -68.624
No. Observations: 15 AIC: 145.2
Df Residuals: 11 BIC: 148.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 185.0570 86.697 2.135 0.056 -5.762 375.876
C(dose)[T.1] -368.2335 234.366 -1.571 0.144 -884.069 147.602
expression -19.6581 14.385 -1.367 0.199 -51.319 12.003
expression:C(dose)[T.1] 75.0087 42.659 1.758 0.106 -18.883 168.900
Omnibus: 0.893 Durbin-Watson: 1.323
Prob(Omnibus): 0.640 Jarque-Bera (JB): 0.433
Skew: -0.406 Prob(JB): 0.805
Kurtosis: 2.817 Cond. No. 224.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.474
Model: OLS Adj. R-squared: 0.386
Method: Least Squares F-statistic: 5.406
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0212
Time: 04:34:51 Log-Likelihood: -70.482
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 134.0200 88.528 1.514 0.156 -58.867 326.907
C(dose)[T.1] 42.8831 17.485 2.453 0.030 4.787 80.979
expression -11.1288 14.675 -0.758 0.463 -43.104 20.846
Omnibus: 2.953 Durbin-Watson: 0.777
Prob(Omnibus): 0.228 Jarque-Bera (JB): 1.901
Skew: -0.864 Prob(JB): 0.386
Kurtosis: 2.762 Cond. No. 68.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:34:51 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.210
Model: OLS Adj. R-squared: 0.150
Method: Least Squares F-statistic: 3.462
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0856
Time: 04:34:51 Log-Likelihood: -73.529
No. Observations: 15 AIC: 151.1
Df Residuals: 13 BIC: 152.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 254.2533 86.778 2.930 0.012 66.781 441.726
expression -28.2666 15.192 -1.861 0.086 -61.086 4.553
Omnibus: 3.921 Durbin-Watson: 1.572
Prob(Omnibus): 0.141 Jarque-Bera (JB): 1.341
Skew: 0.209 Prob(JB): 0.512
Kurtosis: 1.596 Cond. No. 56.6