AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.124 | 0.302 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.669 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 12.79 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.33e-05 |
Time: | 05:24:55 | Log-Likelihood: | -100.39 |
No. Observations: | 23 | AIC: | 208.8 |
Df Residuals: | 19 | BIC: | 213.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 245.3765 | 358.298 | 0.685 | 0.502 | -504.549 995.302 |
C(dose)[T.1] | 196.2497 | 509.388 | 0.385 | 0.704 | -869.912 1262.412 |
expression | -20.4162 | 38.260 | -0.534 | 0.600 | -100.495 59.662 |
expression:C(dose)[T.1] | -13.5150 | 53.064 | -0.255 | 0.802 | -124.579 97.549 |
Omnibus: | 0.087 | Durbin-Watson: | 1.618 |
Prob(Omnibus): | 0.958 | Jarque-Bera (JB): | 0.312 |
Skew: | -0.011 | Prob(JB): | 0.856 |
Kurtosis: | 2.430 | Cond. No. | 1.48e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.668 |
Model: | OLS | Adj. R-squared: | 0.635 |
Method: | Least Squares | F-statistic: | 20.10 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.64e-05 |
Time: | 05:24:55 | Log-Likelihood: | -100.43 |
No. Observations: | 23 | AIC: | 206.9 |
Df Residuals: | 20 | BIC: | 210.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 311.1640 | 242.436 | 1.283 | 0.214 | -194.548 816.876 |
C(dose)[T.1] | 66.5719 | 15.121 | 4.403 | 0.000 | 35.030 98.114 |
expression | -27.4421 | 25.884 | -1.060 | 0.302 | -81.435 26.550 |
Omnibus: | 0.159 | Durbin-Watson: | 1.620 |
Prob(Omnibus): | 0.924 | Jarque-Bera (JB): | 0.375 |
Skew: | 0.026 | Prob(JB): | 0.829 |
Kurtosis: | 2.376 | Cond. No. | 553. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:24:55 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.346 |
Model: | OLS | Adj. R-squared: | 0.315 |
Method: | Least Squares | F-statistic: | 11.10 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00317 |
Time: | 05:24:55 | Log-Likelihood: | -108.23 |
No. Observations: | 23 | AIC: | 220.5 |
Df Residuals: | 21 | BIC: | 222.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -559.5773 | 192.006 | -2.914 | 0.008 | -958.876 -160.278 |
expression | 66.6334 | 20.003 | 3.331 | 0.003 | 25.034 108.233 |
Omnibus: | 1.870 | Durbin-Watson: | 2.553 |
Prob(Omnibus): | 0.393 | Jarque-Bera (JB): | 0.781 |
Skew: | 0.417 | Prob(JB): | 0.677 |
Kurtosis: | 3.347 | Cond. No. | 319. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.554 | 0.471 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.519 |
Model: | OLS | Adj. R-squared: | 0.388 |
Method: | Least Squares | F-statistic: | 3.956 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0388 |
Time: | 05:24:55 | Log-Likelihood: | -69.811 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 11 | BIC: | 150.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -423.3199 | 387.975 | -1.091 | 0.299 | -1277.248 430.608 |
C(dose)[T.1] | 562.5230 | 506.224 | 1.111 | 0.290 | -551.668 1676.714 |
expression | 54.5320 | 43.094 | 1.265 | 0.232 | -40.317 149.381 |
expression:C(dose)[T.1] | -56.9746 | 55.618 | -1.024 | 0.328 | -179.389 65.440 |
Omnibus: | 2.547 | Durbin-Watson: | 0.654 |
Prob(Omnibus): | 0.280 | Jarque-Bera (JB): | 1.534 |
Skew: | -0.779 | Prob(JB): | 0.464 |
Kurtosis: | 2.830 | Cond. No. | 849. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.473 |
Model: | OLS | Adj. R-squared: | 0.385 |
Method: | Least Squares | F-statistic: | 5.388 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0214 |
Time: | 05:24:55 | Log-Likelihood: | -70.494 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 12 | BIC: | 149.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -115.5068 | 245.931 | -0.470 | 0.647 | -651.344 420.330 |
C(dose)[T.1] | 44.2356 | 16.768 | 2.638 | 0.022 | 7.700 80.771 |
expression | 20.3278 | 27.299 | 0.745 | 0.471 | -39.152 79.808 |
Omnibus: | 2.464 | Durbin-Watson: | 0.704 |
Prob(Omnibus): | 0.292 | Jarque-Bera (JB): | 1.745 |
Skew: | -0.805 | Prob(JB): | 0.418 |
Kurtosis: | 2.553 | Cond. No. | 297. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:24:55 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.168 |
Model: | OLS | Adj. R-squared: | 0.104 |
Method: | Least Squares | F-statistic: | 2.617 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.130 |
Time: | 05:24:55 | Log-Likelihood: | -73.925 |
No. Observations: | 15 | AIC: | 151.8 |
Df Residuals: | 13 | BIC: | 153.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -353.1286 | 276.359 | -1.278 | 0.224 | -950.166 243.909 |
expression | 48.9401 | 30.254 | 1.618 | 0.130 | -16.420 114.300 |
Omnibus: | 2.121 | Durbin-Watson: | 1.288 |
Prob(Omnibus): | 0.346 | Jarque-Bera (JB): | 1.262 |
Skew: | 0.425 | Prob(JB): | 0.532 |
Kurtosis: | 1.861 | Cond. No. | 276. |