AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.069 0.795 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.682
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 13.60
Date: Tue, 28 Jan 2025 Prob (F-statistic): 5.67e-05
Time: 19:06:41 Log-Likelihood: -99.919
No. Observations: 23 AIC: 207.8
Df Residuals: 19 BIC: 212.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 93.4000 37.899 2.464 0.023 14.077 172.723
C(dose)[T.1] -25.6663 57.060 -0.450 0.658 -145.093 93.761
expression -8.3256 7.952 -1.047 0.308 -24.970 8.318
expression:C(dose)[T.1] 18.2888 13.221 1.383 0.183 -9.383 45.960
Omnibus: 0.990 Durbin-Watson: 1.521
Prob(Omnibus): 0.609 Jarque-Bera (JB): 0.956
Skew: 0.356 Prob(JB): 0.620
Kurtosis: 2.300 Cond. No. 75.8

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.59
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.74e-05
Time: 19:06:41 Log-Likelihood: -101.02
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 62.2538 31.174 1.997 0.060 -2.774 127.282
C(dose)[T.1] 52.1211 9.900 5.265 0.000 31.470 72.772
expression -1.7091 6.496 -0.263 0.795 -15.260 11.842
Omnibus: 0.089 Durbin-Watson: 1.874
Prob(Omnibus): 0.957 Jarque-Bera (JB): 0.300
Skew: 0.080 Prob(JB): 0.861
Kurtosis: 2.464 Cond. No. 33.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 19:06:41 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.166
Model: OLS Adj. R-squared: 0.126
Method: Least Squares F-statistic: 4.167
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0540
Time: 19:06:41 Log-Likelihood: -111.02
No. Observations: 23 AIC: 226.0
Df Residuals: 21 BIC: 228.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 156.9142 38.389 4.087 0.001 77.080 236.749
expression -17.6770 8.660 -2.041 0.054 -35.686 0.332
Omnibus: 2.326 Durbin-Watson: 2.161
Prob(Omnibus): 0.313 Jarque-Bera (JB): 1.851
Skew: 0.556 Prob(JB): 0.396
Kurtosis: 2.167 Cond. No. 27.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.842 0.377 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.500
Model: OLS Adj. R-squared: 0.364
Method: Least Squares F-statistic: 3.673
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0471
Time: 19:06:41 Log-Likelihood: -70.095
No. Observations: 15 AIC: 148.2
Df Residuals: 11 BIC: 151.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 209.9032 149.894 1.400 0.189 -120.010 539.817
C(dose)[T.1] -50.0297 175.307 -0.285 0.781 -435.879 335.819
expression -27.0725 28.399 -0.953 0.361 -89.579 35.434
expression:C(dose)[T.1] 19.2056 32.805 0.585 0.570 -52.999 91.410
Omnibus: 0.955 Durbin-Watson: 0.821
Prob(Omnibus): 0.620 Jarque-Bera (JB): 0.837
Skew: -0.365 Prob(JB): 0.658
Kurtosis: 2.102 Cond. No. 187.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.485
Model: OLS Adj. R-squared: 0.399
Method: Least Squares F-statistic: 5.648
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0187
Time: 19:06:41 Log-Likelihood: -70.325
No. Observations: 15 AIC: 146.6
Df Residuals: 12 BIC: 148.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 134.1569 73.582 1.823 0.093 -26.163 294.477
C(dose)[T.1] 52.1738 15.557 3.354 0.006 18.277 86.071
expression -12.6795 13.821 -0.917 0.377 -42.794 17.435
Omnibus: 1.019 Durbin-Watson: 0.935
Prob(Omnibus): 0.601 Jarque-Bera (JB): 0.810
Skew: -0.283 Prob(JB): 0.667
Kurtosis: 2.012 Cond. No. 54.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 19:06:41 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.075
Method: Least Squares F-statistic: 0.02773
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.870
Time: 19:06:41 Log-Likelihood: -75.284
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 109.8841 97.919 1.122 0.282 -101.657 321.426
expression -3.0099 18.076 -0.167 0.870 -42.060 36.040
Omnibus: 0.737 Durbin-Watson: 1.634
Prob(Omnibus): 0.692 Jarque-Bera (JB): 0.641
Skew: 0.120 Prob(JB): 0.726
Kurtosis: 2.016 Cond. No. 54.0