AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.487 | 0.237 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.673 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 13.06 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.34e-05 |
Time: | 04:26:50 | Log-Likelihood: | -100.24 |
No. Observations: | 23 | AIC: | 208.5 |
Df Residuals: | 19 | BIC: | 213.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 268.4300 | 322.704 | 0.832 | 0.416 | -406.997 943.857 |
C(dose)[T.1] | 46.2190 | 385.072 | 0.120 | 0.906 | -759.746 852.184 |
expression | -20.4099 | 30.740 | -0.664 | 0.515 | -84.750 43.930 |
expression:C(dose)[T.1] | 1.1586 | 36.415 | 0.032 | 0.975 | -75.058 77.376 |
Omnibus: | 0.259 | Durbin-Watson: | 1.773 |
Prob(Omnibus): | 0.879 | Jarque-Bera (JB): | 0.386 |
Skew: | 0.209 | Prob(JB): | 0.824 |
Kurtosis: | 2.522 | Cond. No. | 1.36e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.673 |
Model: | OLS | Adj. R-squared: | 0.641 |
Method: | Least Squares | F-statistic: | 20.61 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.38e-05 |
Time: | 04:26:50 | Log-Likelihood: | -100.24 |
No. Observations: | 23 | AIC: | 206.5 |
Df Residuals: | 20 | BIC: | 209.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 259.7640 | 168.692 | 1.540 | 0.139 | -92.121 611.649 |
C(dose)[T.1] | 58.4670 | 9.449 | 6.187 | 0.000 | 38.756 78.178 |
expression | -19.5842 | 16.062 | -1.219 | 0.237 | -53.090 13.921 |
Omnibus: | 0.258 | Durbin-Watson: | 1.777 |
Prob(Omnibus): | 0.879 | Jarque-Bera (JB): | 0.386 |
Skew: | 0.209 | Prob(JB): | 0.825 |
Kurtosis: | 2.522 | Cond. No. | 428. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:26:50 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.048 |
Model: | OLS | Adj. R-squared: | 0.003 |
Method: | Least Squares | F-statistic: | 1.060 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.315 |
Time: | 04:26:50 | Log-Likelihood: | -112.54 |
No. Observations: | 23 | AIC: | 229.1 |
Df Residuals: | 21 | BIC: | 231.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -182.2768 | 254.586 | -0.716 | 0.482 | -711.717 347.163 |
expression | 24.6670 | 23.960 | 1.029 | 0.315 | -25.161 74.495 |
Omnibus: | 1.660 | Durbin-Watson: | 2.366 |
Prob(Omnibus): | 0.436 | Jarque-Bera (JB): | 1.254 |
Skew: | 0.358 | Prob(JB): | 0.534 |
Kurtosis: | 2.107 | Cond. No. | 388. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.157 | 0.064 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.640 |
Model: | OLS | Adj. R-squared: | 0.541 |
Method: | Least Squares | F-statistic: | 6.505 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00859 |
Time: | 04:26:50 | Log-Likelihood: | -67.647 |
No. Observations: | 15 | AIC: | 143.3 |
Df Residuals: | 11 | BIC: | 146.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 144.5063 | 318.866 | 0.453 | 0.659 | -557.314 846.327 |
C(dose)[T.1] | -366.3361 | 348.763 | -1.050 | 0.316 | -1133.958 401.286 |
expression | -7.8590 | 32.497 | -0.242 | 0.813 | -79.385 63.667 |
expression:C(dose)[T.1] | 43.7097 | 35.764 | 1.222 | 0.247 | -35.007 122.427 |
Omnibus: | 2.711 | Durbin-Watson: | 1.223 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.881 |
Skew: | -0.844 | Prob(JB): | 0.390 |
Kurtosis: | 2.604 | Cond. No. | 781. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.591 |
Model: | OLS | Adj. R-squared: | 0.522 |
Method: | Least Squares | F-statistic: | 8.655 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00471 |
Time: | 04:26:50 | Log-Likelihood: | -68.602 |
No. Observations: | 15 | AIC: | 143.2 |
Df Residuals: | 12 | BIC: | 145.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -209.4331 | 136.156 | -1.538 | 0.150 | -506.092 87.226 |
C(dose)[T.1] | 59.5529 | 14.485 | 4.111 | 0.001 | 27.994 91.112 |
expression | 28.2295 | 13.846 | 2.039 | 0.064 | -1.938 58.397 |
Omnibus: | 3.370 | Durbin-Watson: | 1.523 |
Prob(Omnibus): | 0.185 | Jarque-Bera (JB): | 2.169 |
Skew: | -0.926 | Prob(JB): | 0.338 |
Kurtosis: | 2.802 | Cond. No. | 196. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:26:50 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.014 |
Model: | OLS | Adj. R-squared: | -0.062 |
Method: | Least Squares | F-statistic: | 0.1827 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.676 |
Time: | 04:26:50 | Log-Likelihood: | -75.195 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 14.2216 | 186.116 | 0.076 | 0.940 | -387.859 416.302 |
expression | 8.2653 | 19.335 | 0.427 | 0.676 | -33.505 50.035 |
Omnibus: | 0.312 | Durbin-Watson: | 1.803 |
Prob(Omnibus): | 0.856 | Jarque-Bera (JB): | 0.459 |
Skew: | -0.067 | Prob(JB): | 0.795 |
Kurtosis: | 2.154 | Cond. No. | 179. |