AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.652 0.429 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.611
Method: Least Squares F-statistic: 12.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.47e-05
Time: 04:33:38 Log-Likelihood: -100.55
No. Observations: 23 AIC: 209.1
Df Residuals: 19 BIC: 213.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -16.1683 125.446 -0.129 0.899 -278.730 246.393
C(dose)[T.1] -133.5390 370.669 -0.360 0.723 -909.358 642.280
expression 7.2941 12.986 0.562 0.581 -19.887 34.475
expression:C(dose)[T.1] 17.1664 35.612 0.482 0.635 -57.369 91.702
Omnibus: 0.810 Durbin-Watson: 1.995
Prob(Omnibus): 0.667 Jarque-Bera (JB): 0.643
Skew: 0.381 Prob(JB): 0.725
Kurtosis: 2.697 Cond. No. 998.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.660
Model: OLS Adj. R-squared: 0.626
Method: Least Squares F-statistic: 19.42
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.06e-05
Time: 04:33:38 Log-Likelihood: -100.69
No. Observations: 23 AIC: 207.4
Df Residuals: 20 BIC: 210.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -38.1941 114.565 -0.333 0.742 -277.172 200.784
C(dose)[T.1] 45.0185 13.437 3.350 0.003 16.988 73.049
expression 9.5769 11.858 0.808 0.429 -15.158 34.312
Omnibus: 0.436 Durbin-Watson: 1.943
Prob(Omnibus): 0.804 Jarque-Bera (JB): 0.421
Skew: 0.280 Prob(JB): 0.810
Kurtosis: 2.644 Cond. No. 272.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:33:38 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.469
Model: OLS Adj. R-squared: 0.444
Method: Least Squares F-statistic: 18.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000309
Time: 04:33:38 Log-Likelihood: -105.82
No. Observations: 23 AIC: 215.6
Df Residuals: 21 BIC: 217.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -323.1074 93.604 -3.452 0.002 -517.767 -128.447
expression 40.0268 9.286 4.310 0.000 20.715 59.339
Omnibus: 1.811 Durbin-Watson: 2.237
Prob(Omnibus): 0.404 Jarque-Bera (JB): 1.283
Skew: 0.571 Prob(JB): 0.526
Kurtosis: 2.813 Cond. No. 181.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.100 0.757 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.613
Model: OLS Adj. R-squared: 0.507
Method: Least Squares F-statistic: 5.798
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0126
Time: 04:33:38 Log-Likelihood: -68.188
No. Observations: 15 AIC: 144.4
Df Residuals: 11 BIC: 147.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 299.0140 184.106 1.624 0.133 -106.200 704.228
C(dose)[T.1] -517.5355 265.763 -1.947 0.077 -1102.476 67.405
expression -28.3373 22.494 -1.260 0.234 -77.846 21.171
expression:C(dose)[T.1] 67.2704 31.631 2.127 0.057 -2.349 136.890
Omnibus: 1.128 Durbin-Watson: 1.296
Prob(Omnibus): 0.569 Jarque-Bera (JB): 0.767
Skew: -0.521 Prob(JB): 0.681
Kurtosis: 2.623 Cond. No. 440.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.453
Model: OLS Adj. R-squared: 0.362
Method: Least Squares F-statistic: 4.975
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0267
Time: 04:33:38 Log-Likelihood: -70.771
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 20.9889 147.440 0.142 0.889 -300.255 342.233
C(dose)[T.1] 46.7199 17.525 2.666 0.021 8.535 84.905
expression 5.6825 17.987 0.316 0.757 -33.507 44.872
Omnibus: 2.111 Durbin-Watson: 0.882
Prob(Omnibus): 0.348 Jarque-Bera (JB): 1.597
Skew: -0.740 Prob(JB): 0.450
Kurtosis: 2.397 Cond. No. 162.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:33:38 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.130
Model: OLS Adj. R-squared: 0.063
Method: Least Squares F-statistic: 1.935
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.188
Time: 04:33:38 Log-Likelihood: -74.259
No. Observations: 15 AIC: 152.5
Df Residuals: 13 BIC: 153.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -134.3541 164.193 -0.818 0.428 -489.072 220.364
expression 27.1295 19.503 1.391 0.188 -15.004 69.263
Omnibus: 0.820 Durbin-Watson: 1.488
Prob(Omnibus): 0.664 Jarque-Bera (JB): 0.458
Skew: -0.408 Prob(JB): 0.795
Kurtosis: 2.743 Cond. No. 148.