AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.006 | 0.939 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.661 |
Model: | OLS | Adj. R-squared: | 0.607 |
Method: | Least Squares | F-statistic: | 12.33 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000105 |
Time: | 04:10:34 | Log-Likelihood: | -100.68 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 213.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 6.5349 | 77.524 | 0.084 | 0.934 | -155.725 168.795 |
C(dose)[T.1] | 136.5426 | 104.017 | 1.313 | 0.205 | -81.168 354.253 |
expression | 17.4275 | 28.251 | 0.617 | 0.545 | -41.703 76.558 |
expression:C(dose)[T.1] | -32.1302 | 40.183 | -0.800 | 0.434 | -116.233 51.973 |
Omnibus: | 1.019 | Durbin-Watson: | 1.911 |
Prob(Omnibus): | 0.601 | Jarque-Bera (JB): | 0.783 |
Skew: | -0.014 | Prob(JB): | 0.676 |
Kurtosis: | 2.096 | Cond. No. | 90.8 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 04:10:34 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 49.9818 | 54.796 | 0.912 | 0.373 | -64.320 164.283 |
C(dose)[T.1] | 53.8297 | 10.825 | 4.973 | 0.000 | 31.250 76.410 |
expression | 1.5450 | 19.908 | 0.078 | 0.939 | -39.982 43.072 |
Omnibus: | 0.235 | Durbin-Watson: | 1.882 |
Prob(Omnibus): | 0.889 | Jarque-Bera (JB): | 0.430 |
Skew: | 0.048 | Prob(JB): | 0.807 |
Kurtosis: | 2.337 | Cond. No. | 37.8 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:10:34 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.215 |
Model: | OLS | Adj. R-squared: | 0.178 |
Method: | Least Squares | F-statistic: | 5.764 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0257 |
Time: | 04:10:34 | Log-Likelihood: | -110.32 |
No. Observations: | 23 | AIC: | 224.6 |
Df Residuals: | 21 | BIC: | 226.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 225.6721 | 61.129 | 3.692 | 0.001 | 98.548 352.796 |
expression | -56.5048 | 23.536 | -2.401 | 0.026 | -105.450 -7.560 |
Omnibus: | 1.197 | Durbin-Watson: | 2.317 |
Prob(Omnibus): | 0.550 | Jarque-Bera (JB): | 0.960 |
Skew: | 0.247 | Prob(JB): | 0.619 |
Kurtosis: | 2.129 | Cond. No. | 28.5 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.432 | 0.145 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.542 |
Model: | OLS | Adj. R-squared: | 0.417 |
Method: | Least Squares | F-statistic: | 4.338 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0301 |
Time: | 04:10:34 | Log-Likelihood: | -69.444 |
No. Observations: | 15 | AIC: | 146.9 |
Df Residuals: | 11 | BIC: | 149.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 170.4521 | 142.916 | 1.193 | 0.258 | -144.104 485.008 |
C(dose)[T.1] | 61.3711 | 168.128 | 0.365 | 0.722 | -308.676 431.418 |
expression | -36.4636 | 50.434 | -0.723 | 0.485 | -147.469 74.542 |
expression:C(dose)[T.1] | -5.1338 | 59.603 | -0.086 | 0.933 | -136.318 126.051 |
Omnibus: | 0.563 | Durbin-Watson: | 1.073 |
Prob(Omnibus): | 0.755 | Jarque-Bera (JB): | 0.597 |
Skew: | -0.201 | Prob(JB): | 0.742 |
Kurtosis: | 2.108 | Cond. No. | 104. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.542 |
Model: | OLS | Adj. R-squared: | 0.465 |
Method: | Least Squares | F-statistic: | 7.090 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00927 |
Time: | 04:10:34 | Log-Likelihood: | -69.449 |
No. Observations: | 15 | AIC: | 144.9 |
Df Residuals: | 12 | BIC: | 147.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 180.8379 | 73.480 | 2.461 | 0.030 | 20.740 340.936 |
C(dose)[T.1] | 46.9477 | 14.425 | 3.255 | 0.007 | 15.519 78.377 |
expression | -40.1395 | 25.741 | -1.559 | 0.145 | -96.224 15.945 |
Omnibus: | 0.607 | Durbin-Watson: | 1.094 |
Prob(Omnibus): | 0.738 | Jarque-Bera (JB): | 0.618 |
Skew: | -0.206 | Prob(JB): | 0.734 |
Kurtosis: | 2.095 | Cond. No. | 32.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:10:34 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.137 |
Model: | OLS | Adj. R-squared: | 0.071 |
Method: | Least Squares | F-statistic: | 2.065 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.174 |
Time: | 04:10:34 | Log-Likelihood: | -74.195 |
No. Observations: | 15 | AIC: | 152.4 |
Df Residuals: | 13 | BIC: | 153.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 229.2902 | 94.859 | 2.417 | 0.031 | 24.360 434.221 |
expression | -48.5149 | 33.764 | -1.437 | 0.174 | -121.458 24.428 |
Omnibus: | 0.569 | Durbin-Watson: | 1.670 |
Prob(Omnibus): | 0.752 | Jarque-Bera (JB): | 0.620 |
Skew: | 0.331 | Prob(JB): | 0.734 |
Kurtosis: | 2.256 | Cond. No. | 31.8 |