AIM Score vs. Gene Expression 
		Full X range:
		
		 
			
		
		Auto X range:
		
		 
		
		
		
		Group Comparisons: Boxplots
		
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.379  |   0.545  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.732 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.689 | 
  | Method: |              Least Squares |     F-statistic:        |     17.27 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  1.18e-05 | 
  | Time: |                  06:46:53 |        Log-Likelihood:     |   -97.977 | 
  | No. Observations: |           23 |         AIC:                |     204.0 | 
  | Df Residuals: |               19 |         BIC:                |     208.5 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  119.7879 |     64.476 |      1.858 |   0.079 |    -15.163   254.738 | 
  | C(dose)[T.1] |              -164.6831 |     94.999 |     -1.734 |   0.099 |   -363.518    34.152 | 
  | expression |                 -10.1048 |      9.899 |     -1.021 |   0.320 |    -30.824    10.615 | 
  | expression:C(dose)[T.1] |     34.8074 |     14.999 |      2.321 |   0.032 |      3.414    66.201 | 
  | Omnibus: |         0.246 |    Durbin-Watson:      |     1.821 | 
  | Prob(Omnibus): |   0.884 |    Jarque-Bera (JB):   |     0.040 | 
  | Skew: |           -0.090 |    Prob(JB):           |     0.980 | 
  | Kurtosis: |        2.904 |    Cond. No.           |      199. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.656 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.621 | 
  | Method: |              Least Squares |     F-statistic:        |     19.03 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  2.35e-05 | 
  | Time: |                  06:46:53 |        Log-Likelihood:     |   -100.85 | 
  | No. Observations: |           23 |         AIC:                |     207.7 | 
  | Df Residuals: |               20 |         BIC:                |     211.1 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        21.3858 |     53.633 |      0.399 |   0.694 |    -90.491   133.263 | 
  | C(dose)[T.1] |     54.9501 |      9.074 |      6.056 |   0.000 |     36.022    73.878 | 
  | expression |        5.0574 |      8.212 |      0.616 |   0.545 |    -12.073    22.187 | 
  | Omnibus: |         0.112 |    Durbin-Watson:      |     1.842 | 
  | Prob(Omnibus): |   0.945 |    Jarque-Bera (JB):   |     0.337 | 
  | Skew: |           -0.012 |    Prob(JB):           |     0.845 | 
  | Kurtosis: |        2.408 |    Cond. No.           |      80.9 | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.649 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.632 | 
  | Method: |              Least Squares |     F-statistic:        |     38.84 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  3.51e-06 | 
  | Time: |                  06:46:53 |        Log-Likelihood:     |   -101.06 | 
  | No. Observations: |           23 |         AIC:                |     206.1 | 
  | Df Residuals: |               21 |         BIC:                |     208.4 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        54.2083 |      5.919 |      9.159 |   0.000 |     41.900    66.517 | 
  | C(dose)[T.1] |     53.3371 |      8.558 |      6.232 |   0.000 |     35.539    71.135 | 
  | Omnibus: |         0.322 |    Durbin-Watson:      |     1.888 | 
  | Prob(Omnibus): |   0.851 |    Jarque-Bera (JB):   |     0.485 | 
  | Skew: |            0.060 |    Prob(JB):           |     0.785 | 
  | Kurtosis: |        2.299 |    Cond. No.           |      2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.024 | 
  | Model: |                    OLS |          Adj. R-squared:     |    -0.022 | 
  | Method: |              Least Squares |     F-statistic:        |    0.5180 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |    0.480 |  
  | Time: |                  06:46:53 |        Log-Likelihood:     |   -112.82 | 
  | No. Observations: |           23 |         AIC:                |     229.6 | 
  | Df Residuals: |               21 |         BIC:                |     231.9 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     138.6311 |     82.165 |      1.687 |   0.106 |    -32.241   309.504 | 
  | expression |     -9.2961 |     12.916 |     -0.720 |   0.480 |    -36.157    17.565 | 
  | Omnibus: |         2.070 |    Durbin-Watson:      |     2.495 | 
  | Prob(Omnibus): |   0.355 |    Jarque-Bera (JB):   |     1.633 | 
  | Skew: |            0.497 |    Prob(JB):           |     0.442 | 
  | Kurtosis: |        2.153 |    Cond. No.           |      75.1 | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.007  |   0.936  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.299 | 
  | Method: |              Least Squares |     F-statistic:        |     2.989 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0775 |  
  | Time: |                  06:46:53 |        Log-Likelihood:     |   -70.829 | 
  | No. Observations: |           15 |         AIC:                |     149.7 | 
  | Df Residuals: |               11 |         BIC:                |     152.5 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                   70.5555 |     61.630 |      1.145 |   0.277 |    -65.092   206.203 | 
  | C(dose)[T.1] |                49.0841 |     80.573 |      0.609 |   0.555 |   -128.256   226.425 | 
  | expression |                  -0.6337 |     12.252 |     -0.052 |   0.960 |    -27.599    26.332 | 
  | expression:C(dose)[T.1] |     -0.0202 |     16.460 |     -0.001 |   0.999 |    -36.248    36.207 | 
  | Omnibus: |         2.484 |    Durbin-Watson:      |     0.822 | 
  | Prob(Omnibus): |   0.289 |    Jarque-Bera (JB):   |     1.747 | 
  | Skew: |           -0.808 |    Prob(JB):           |     0.418 | 
  | Kurtosis: |        2.569 |    Cond. No.           |      67.7 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.357 | 
  | Method: |              Least Squares |     F-statistic:        |     4.891 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0280 |  
  | Time: |                  06:46:53 |        Log-Likelihood:     |   -70.829 | 
  | No. Observations: |           15 |         AIC:                |     147.7 | 
  | Df Residuals: |               12 |         BIC:                |     149.8 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        70.6107 |     40.322 |      1.751 |   0.105 |    -17.244   158.466 | 
  | C(dose)[T.1] |     48.9874 |     15.939 |      3.073 |   0.010 |     14.260    83.715 | 
  | expression |       -0.6449 |      7.833 |     -0.082 |   0.936 |    -17.712    16.422 | 
  | Omnibus: |         2.485 |    Durbin-Watson:      |     0.822 | 
  | Prob(Omnibus): |   0.289 |    Jarque-Bera (JB):   |     1.747 | 
  | Skew: |           -0.808 |    Prob(JB):           |     0.417 | 
  | Kurtosis: |        2.569 |    Cond. No.           |      26.4 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.406 | 
  | Method: |              Least Squares |     F-statistic:        |     10.58 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00629 | 
  | Time: |                  06:46:53 |        Log-Likelihood:     |   -70.833 | 
  | No. Observations: |           15 |         AIC:                |     145.7 | 
  | Df Residuals: |               13 |         BIC:                |     147.1 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        67.4286 |     11.044 |      6.106 |   0.000 |     43.570    91.287 | 
  | C(dose)[T.1] |     49.1964 |     15.122 |      3.253 |   0.006 |     16.527    81.866 | 
  | Omnibus: |         2.713 |    Durbin-Watson:      |     0.810 | 
  | Prob(Omnibus): |   0.258 |    Jarque-Bera (JB):   |     1.868 | 
  | Skew: |           -0.843 |    Prob(JB):           |     0.393 | 
  | Kurtosis: |        2.619 |    Cond. No.           |      2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.015 | 
  | Model: |                    OLS |          Adj. R-squared:     |    -0.060 | 
  | Method: |              Least Squares |     F-statistic:        |    0.2034 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |    0.659 |  
  | Time: |                  06:46:53 |        Log-Likelihood:     |   -75.184 | 
  | No. Observations: |           15 |         AIC:                |     154.4 | 
  | Df Residuals: |               13 |         BIC:                |     155.8 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     114.9953 |     48.355 |      2.378 |   0.033 |     10.530   219.461 | 
  | expression |     -4.4796 |      9.933 |     -0.451 |   0.659 |    -25.938    16.979 | 
  | Omnibus: |         0.659 |    Durbin-Watson:      |     1.674 | 
  | Prob(Omnibus): |   0.719 |    Jarque-Bera (JB):   |     0.622 | 
  | Skew: |            0.151 |    Prob(JB):           |     0.733 | 
  | Kurtosis: |        2.049 |    Cond. No.           |      24.3 |