AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.379 0.545 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.732
Model: OLS Adj. R-squared: 0.689
Method: Least Squares F-statistic: 17.27
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.18e-05
Time: 04:56:43 Log-Likelihood: -97.977
No. Observations: 23 AIC: 204.0
Df Residuals: 19 BIC: 208.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 119.7879 64.476 1.858 0.079 -15.163 254.738
C(dose)[T.1] -164.6831 94.999 -1.734 0.099 -363.518 34.152
expression -10.1048 9.899 -1.021 0.320 -30.824 10.615
expression:C(dose)[T.1] 34.8074 14.999 2.321 0.032 3.414 66.201
Omnibus: 0.246 Durbin-Watson: 1.821
Prob(Omnibus): 0.884 Jarque-Bera (JB): 0.040
Skew: -0.090 Prob(JB): 0.980
Kurtosis: 2.904 Cond. No. 199.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.03
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.35e-05
Time: 04:56:43 Log-Likelihood: -100.85
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 21.3858 53.633 0.399 0.694 -90.491 133.263
C(dose)[T.1] 54.9501 9.074 6.056 0.000 36.022 73.878
expression 5.0574 8.212 0.616 0.545 -12.073 22.187
Omnibus: 0.112 Durbin-Watson: 1.842
Prob(Omnibus): 0.945 Jarque-Bera (JB): 0.337
Skew: -0.012 Prob(JB): 0.845
Kurtosis: 2.408 Cond. No. 80.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:56:43 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.024
Model: OLS Adj. R-squared: -0.022
Method: Least Squares F-statistic: 0.5180
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.480
Time: 04:56:43 Log-Likelihood: -112.82
No. Observations: 23 AIC: 229.6
Df Residuals: 21 BIC: 231.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 138.6311 82.165 1.687 0.106 -32.241 309.504
expression -9.2961 12.916 -0.720 0.480 -36.157 17.565
Omnibus: 2.070 Durbin-Watson: 2.495
Prob(Omnibus): 0.355 Jarque-Bera (JB): 1.633
Skew: 0.497 Prob(JB): 0.442
Kurtosis: 2.153 Cond. No. 75.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.007 0.936 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.299
Method: Least Squares F-statistic: 2.989
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0775
Time: 04:56:43 Log-Likelihood: -70.829
No. Observations: 15 AIC: 149.7
Df Residuals: 11 BIC: 152.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 70.5555 61.630 1.145 0.277 -65.092 206.203
C(dose)[T.1] 49.0841 80.573 0.609 0.555 -128.256 226.425
expression -0.6337 12.252 -0.052 0.960 -27.599 26.332
expression:C(dose)[T.1] -0.0202 16.460 -0.001 0.999 -36.248 36.207
Omnibus: 2.484 Durbin-Watson: 0.822
Prob(Omnibus): 0.289 Jarque-Bera (JB): 1.747
Skew: -0.808 Prob(JB): 0.418
Kurtosis: 2.569 Cond. No. 67.7

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.891
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0280
Time: 04:56:43 Log-Likelihood: -70.829
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 70.6107 40.322 1.751 0.105 -17.244 158.466
C(dose)[T.1] 48.9874 15.939 3.073 0.010 14.260 83.715
expression -0.6449 7.833 -0.082 0.936 -17.712 16.422
Omnibus: 2.485 Durbin-Watson: 0.822
Prob(Omnibus): 0.289 Jarque-Bera (JB): 1.747
Skew: -0.808 Prob(JB): 0.417
Kurtosis: 2.569 Cond. No. 26.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:56:43 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.015
Model: OLS Adj. R-squared: -0.060
Method: Least Squares F-statistic: 0.2034
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.659
Time: 04:56:43 Log-Likelihood: -75.184
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 114.9953 48.355 2.378 0.033 10.530 219.461
expression -4.4796 9.933 -0.451 0.659 -25.938 16.979
Omnibus: 0.659 Durbin-Watson: 1.674
Prob(Omnibus): 0.719 Jarque-Bera (JB): 0.622
Skew: 0.151 Prob(JB): 0.733
Kurtosis: 2.049 Cond. No. 24.3