AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.006 0.939 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.681
Model: OLS Adj. R-squared: 0.631
Method: Least Squares F-statistic: 13.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.86e-05
Time: 03:35:02 Log-Likelihood: -99.959
No. Observations: 23 AIC: 207.9
Df Residuals: 19 BIC: 212.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 0.4651 56.073 0.008 0.993 -116.896 117.826
C(dose)[T.1] 164.7650 80.995 2.034 0.056 -4.759 334.289
expression 15.0583 15.623 0.964 0.347 -17.641 47.757
expression:C(dose)[T.1] -32.9771 23.875 -1.381 0.183 -82.947 16.993
Omnibus: 2.083 Durbin-Watson: 2.049
Prob(Omnibus): 0.353 Jarque-Bera (JB): 1.093
Skew: -0.063 Prob(JB): 0.579
Kurtosis: 1.939 Cond. No. 88.3

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.83e-05
Time: 03:35:02 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 50.8626 43.534 1.168 0.256 -39.947 141.672
C(dose)[T.1] 53.6650 9.733 5.513 0.000 33.361 73.969
expression 0.9374 12.079 0.078 0.939 -24.258 26.133
Omnibus: 0.345 Durbin-Watson: 1.905
Prob(Omnibus): 0.841 Jarque-Bera (JB): 0.498
Skew: 0.055 Prob(JB): 0.779
Kurtosis: 2.287 Cond. No. 37.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:35:02 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.116
Model: OLS Adj. R-squared: 0.074
Method: Least Squares F-statistic: 2.753
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.112
Time: 03:35:02 Log-Likelihood: -111.69
No. Observations: 23 AIC: 227.4
Df Residuals: 21 BIC: 229.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 174.8685 57.743 3.028 0.006 54.786 294.951
expression -27.9715 16.857 -1.659 0.112 -63.028 7.085
Omnibus: 1.942 Durbin-Watson: 2.243
Prob(Omnibus): 0.379 Jarque-Bera (JB): 1.050
Skew: 0.022 Prob(JB): 0.591
Kurtosis: 1.954 Cond. No. 31.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.083 0.779 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.468
Model: OLS Adj. R-squared: 0.323
Method: Least Squares F-statistic: 3.228
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0648
Time: 03:35:02 Log-Likelihood: -70.564
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 152.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -127.5841 308.771 -0.413 0.687 -807.184 552.016
C(dose)[T.1] 237.5471 339.572 0.700 0.499 -509.845 984.939
expression 48.2368 76.319 0.632 0.540 -119.741 216.214
expression:C(dose)[T.1] -46.7894 82.228 -0.569 0.581 -227.772 134.194
Omnibus: 2.364 Durbin-Watson: 0.640
Prob(Omnibus): 0.307 Jarque-Bera (JB): 1.665
Skew: -0.786 Prob(JB): 0.435
Kurtosis: 2.564 Cond. No. 306.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.453
Model: OLS Adj. R-squared: 0.361
Method: Least Squares F-statistic: 4.960
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0269
Time: 03:35:02 Log-Likelihood: -70.782
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 35.3681 112.153 0.315 0.758 -208.992 279.729
C(dose)[T.1] 44.7553 22.020 2.032 0.065 -3.222 92.733
expression 7.9302 27.596 0.287 0.779 -52.197 68.057
Omnibus: 3.845 Durbin-Watson: 0.780
Prob(Omnibus): 0.146 Jarque-Bera (JB): 2.306
Skew: -0.960 Prob(JB): 0.316
Kurtosis: 2.996 Cond. No. 67.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:35:02 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.264
Model: OLS Adj. R-squared: 0.207
Method: Least Squares F-statistic: 4.665
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0500
Time: 03:35:02 Log-Likelihood: -73.000
No. Observations: 15 AIC: 150.0
Df Residuals: 13 BIC: 151.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -111.6656 95.467 -1.170 0.263 -317.909 94.578
expression 47.2952 21.898 2.160 0.050 -0.011 94.602
Omnibus: 2.546 Durbin-Watson: 1.053
Prob(Omnibus): 0.280 Jarque-Bera (JB): 1.257
Skew: -0.708 Prob(JB): 0.533
Kurtosis: 3.084 Cond. No. 50.2