AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.245 0.626 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.681
Model: OLS Adj. R-squared: 0.630
Method: Least Squares F-statistic: 13.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.94e-05
Time: 04:55:27 Log-Likelihood: -99.977
No. Observations: 23 AIC: 208.0
Df Residuals: 19 BIC: 212.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 137.4762 119.556 1.150 0.264 -112.757 387.710
C(dose)[T.1] -139.1049 151.257 -0.920 0.369 -455.689 177.479
expression -12.2276 17.535 -0.697 0.494 -48.928 24.473
expression:C(dose)[T.1] 28.3781 22.237 1.276 0.217 -18.165 74.921
Omnibus: 1.639 Durbin-Watson: 1.715
Prob(Omnibus): 0.441 Jarque-Bera (JB): 0.990
Skew: -0.090 Prob(JB): 0.610
Kurtosis: 2.000 Cond. No. 335.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.51e-05
Time: 04:55:27 Log-Likelihood: -100.92
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 17.3189 74.825 0.231 0.819 -138.763 173.401
C(dose)[T.1] 53.6082 8.734 6.138 0.000 35.390 71.827
expression 5.4171 10.952 0.495 0.626 -17.428 28.263
Omnibus: 0.321 Durbin-Watson: 1.760
Prob(Omnibus): 0.852 Jarque-Bera (JB): 0.488
Skew: 0.107 Prob(JB): 0.783
Kurtosis: 2.319 Cond. No. 120.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:55:27 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.004380
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.948
Time: 04:55:27 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 71.5819 123.133 0.581 0.567 -184.487 327.651
expression 1.1989 18.114 0.066 0.948 -36.472 38.870
Omnibus: 3.434 Durbin-Watson: 2.481
Prob(Omnibus): 0.180 Jarque-Bera (JB): 1.580
Skew: 0.279 Prob(JB): 0.454
Kurtosis: 1.844 Cond. No. 118.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.132 0.723 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.589
Model: OLS Adj. R-squared: 0.476
Method: Least Squares F-statistic: 5.248
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0172
Time: 04:55:27 Log-Likelihood: -68.637
No. Observations: 15 AIC: 145.3
Df Residuals: 11 BIC: 148.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 364.7622 372.940 0.978 0.349 -456.074 1185.598
C(dose)[T.1] -1179.9318 647.144 -1.823 0.096 -2604.287 244.423
expression -36.1957 45.382 -0.798 0.442 -136.081 63.690
expression:C(dose)[T.1] 145.0478 76.651 1.892 0.085 -23.661 313.756
Omnibus: 8.826 Durbin-Watson: 0.888
Prob(Omnibus): 0.012 Jarque-Bera (JB): 5.242
Skew: -1.307 Prob(JB): 0.0727
Kurtosis: 4.246 Cond. No. 973.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.364
Method: Least Squares F-statistic: 5.005
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0263
Time: 04:55:27 Log-Likelihood: -70.751
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -52.9022 331.367 -0.160 0.876 -774.888 669.084
C(dose)[T.1] 44.1342 20.956 2.106 0.057 -1.524 89.793
expression 14.6484 40.315 0.363 0.723 -73.190 102.487
Omnibus: 2.894 Durbin-Watson: 0.779
Prob(Omnibus): 0.235 Jarque-Bera (JB): 1.924
Skew: -0.864 Prob(JB): 0.382
Kurtosis: 2.698 Cond. No. 363.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:55:27 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.253
Model: OLS Adj. R-squared: 0.196
Method: Least Squares F-statistic: 4.409
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0558
Time: 04:55:27 Log-Likelihood: -73.110
No. Observations: 15 AIC: 150.2
Df Residuals: 13 BIC: 151.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -503.4658 284.532 -1.769 0.100 -1118.160 111.228
expression 71.0964 33.861 2.100 0.056 -2.056 144.249
Omnibus: 1.414 Durbin-Watson: 1.223
Prob(Omnibus): 0.493 Jarque-Bera (JB): 1.150
Skew: -0.526 Prob(JB): 0.563
Kurtosis: 2.143 Cond. No. 276.