AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.262 | 0.615 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.658 |
Model: | OLS | Adj. R-squared: | 0.604 |
Method: | Least Squares | F-statistic: | 12.20 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000111 |
Time: | 04:59:45 | Log-Likelihood: | -100.75 |
No. Observations: | 23 | AIC: | 209.5 |
Df Residuals: | 19 | BIC: | 214.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -7.3109 | 85.770 | -0.085 | 0.933 | -186.830 172.208 |
C(dose)[T.1] | 114.7307 | 118.749 | 0.966 | 0.346 | -133.815 363.276 |
expression | 9.1606 | 12.739 | 0.719 | 0.481 | -17.502 35.824 |
expression:C(dose)[T.1] | -9.1416 | 17.758 | -0.515 | 0.613 | -46.309 28.026 |
Omnibus: | 0.715 | Durbin-Watson: | 1.913 |
Prob(Omnibus): | 0.699 | Jarque-Bera (JB): | 0.675 |
Skew: | -0.056 | Prob(JB): | 0.714 |
Kurtosis: | 2.168 | Cond. No. | 239. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 18.87 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.49e-05 |
Time: | 04:59:45 | Log-Likelihood: | -100.91 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 24.2835 | 58.805 | 0.413 | 0.684 | -98.382 146.949 |
C(dose)[T.1] | 53.7712 | 8.754 | 6.142 | 0.000 | 35.510 72.032 |
expression | 4.4560 | 8.710 | 0.512 | 0.615 | -13.714 22.626 |
Omnibus: | 0.407 | Durbin-Watson: | 1.848 |
Prob(Omnibus): | 0.816 | Jarque-Bera (JB): | 0.539 |
Skew: | -0.110 | Prob(JB): | 0.764 |
Kurtosis: | 2.283 | Cond. No. | 92.6 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:59:45 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.002574 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.960 |
Time: | 04:59:45 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 84.5808 | 96.131 | 0.880 | 0.389 | -115.334 284.496 |
expression | -0.7293 | 14.374 | -0.051 | 0.960 | -30.621 29.163 |
Omnibus: | 3.237 | Durbin-Watson: | 2.491 |
Prob(Omnibus): | 0.198 | Jarque-Bera (JB): | 1.560 |
Skew: | 0.291 | Prob(JB): | 0.458 |
Kurtosis: | 1.865 | Cond. No. | 91.1 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.401 | 0.538 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.546 |
Model: | OLS | Adj. R-squared: | 0.422 |
Method: | Least Squares | F-statistic: | 4.409 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0288 |
Time: | 04:59:45 | Log-Likelihood: | -69.379 |
No. Observations: | 15 | AIC: | 146.8 |
Df Residuals: | 11 | BIC: | 149.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 57.3768 | 139.937 | 0.410 | 0.690 | -250.623 365.377 |
C(dose)[T.1] | -435.1316 | 351.765 | -1.237 | 0.242 | -1209.361 339.098 |
expression | 1.4338 | 19.901 | 0.072 | 0.944 | -42.367 45.235 |
expression:C(dose)[T.1] | 71.5999 | 51.641 | 1.386 | 0.193 | -42.062 185.262 |
Omnibus: | 1.574 | Durbin-Watson: | 1.153 |
Prob(Omnibus): | 0.455 | Jarque-Bera (JB): | 1.089 |
Skew: | -0.628 | Prob(JB): | 0.580 |
Kurtosis: | 2.594 | Cond. No. | 389. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.467 |
Model: | OLS | Adj. R-squared: | 0.378 |
Method: | Least Squares | F-statistic: | 5.249 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0230 |
Time: | 04:59:45 | Log-Likelihood: | -70.586 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 12 | BIC: | 149.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -17.1645 | 134.071 | -0.128 | 0.900 | -309.279 274.950 |
C(dose)[T.1] | 52.1075 | 16.151 | 3.226 | 0.007 | 16.917 87.298 |
expression | 12.0667 | 19.056 | 0.633 | 0.538 | -29.453 53.587 |
Omnibus: | 3.556 | Durbin-Watson: | 0.832 |
Prob(Omnibus): | 0.169 | Jarque-Bera (JB): | 2.340 |
Skew: | -0.961 | Prob(JB): | 0.310 |
Kurtosis: | 2.776 | Cond. No. | 123. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:59:45 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.004 |
Model: | OLS | Adj. R-squared: | -0.073 |
Method: | Least Squares | F-statistic: | 0.05131 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.824 |
Time: | 04:59:45 | Log-Likelihood: | -75.271 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 131.0536 | 165.366 | 0.793 | 0.442 | -226.198 488.305 |
expression | -5.4328 | 23.984 | -0.227 | 0.824 | -57.248 46.382 |
Omnibus: | 1.071 | Durbin-Watson: | 1.578 |
Prob(Omnibus): | 0.585 | Jarque-Bera (JB): | 0.734 |
Skew: | 0.073 | Prob(JB): | 0.693 |
Kurtosis: | 1.926 | Cond. No. | 115. |