AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.370 0.550 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.607
Method: Least Squares F-statistic: 12.35
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000104
Time: 04:46:05 Log-Likelihood: -100.67
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 97.9899 54.006 1.814 0.085 -15.047 211.026
C(dose)[T.1] 10.7420 73.450 0.146 0.885 -142.990 164.474
expression -7.2363 8.869 -0.816 0.425 -25.799 11.326
expression:C(dose)[T.1] 7.0204 12.622 0.556 0.585 -19.398 33.439
Omnibus: 0.226 Durbin-Watson: 2.271
Prob(Omnibus): 0.893 Jarque-Bera (JB): 0.424
Skew: -0.010 Prob(JB): 0.809
Kurtosis: 2.335 Cond. No. 129.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.02
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.36e-05
Time: 04:46:05 Log-Likelihood: -100.85
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 77.0204 37.995 2.027 0.056 -2.235 156.276
C(dose)[T.1] 51.2503 9.343 5.485 0.000 31.761 70.740
expression -3.7704 6.201 -0.608 0.550 -16.705 9.164
Omnibus: 0.161 Durbin-Watson: 2.123
Prob(Omnibus): 0.923 Jarque-Bera (JB): 0.376
Skew: 0.043 Prob(JB): 0.828
Kurtosis: 2.379 Cond. No. 53.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:46:05 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.137
Model: OLS Adj. R-squared: 0.096
Method: Least Squares F-statistic: 3.334
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0821
Time: 04:46:05 Log-Likelihood: -111.41
No. Observations: 23 AIC: 226.8
Df Residuals: 21 BIC: 229.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 173.8180 51.967 3.345 0.003 65.747 281.889
expression -16.2647 8.907 -1.826 0.082 -34.788 2.259
Omnibus: 1.358 Durbin-Watson: 2.851
Prob(Omnibus): 0.507 Jarque-Bera (JB): 1.168
Skew: 0.384 Prob(JB): 0.558
Kurtosis: 2.207 Cond. No. 46.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.434 0.523 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.537
Model: OLS Adj. R-squared: 0.410
Method: Least Squares F-statistic: 4.248
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0319
Time: 04:46:05 Log-Likelihood: -69.529
No. Observations: 15 AIC: 147.1
Df Residuals: 11 BIC: 149.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -14.3029 73.398 -0.195 0.849 -175.850 147.244
C(dose)[T.1] 279.0239 179.514 1.554 0.148 -116.085 674.132
expression 12.7835 11.350 1.126 0.284 -12.198 37.765
expression:C(dose)[T.1] -36.6252 28.664 -1.278 0.228 -99.715 26.465
Omnibus: 0.299 Durbin-Watson: 1.369
Prob(Omnibus): 0.861 Jarque-Bera (JB): 0.455
Skew: -0.188 Prob(JB): 0.797
Kurtosis: 2.235 Cond. No. 181.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.468
Model: OLS Adj. R-squared: 0.379
Method: Least Squares F-statistic: 5.278
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0227
Time: 04:46:05 Log-Likelihood: -70.567
No. Observations: 15 AIC: 147.1
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 22.4119 69.296 0.323 0.752 -128.572 173.396
C(dose)[T.1] 50.4770 15.585 3.239 0.007 16.521 84.433
expression 7.0410 10.694 0.658 0.523 -16.259 30.341
Omnibus: 3.773 Durbin-Watson: 0.887
Prob(Omnibus): 0.152 Jarque-Bera (JB): 2.255
Skew: -0.950 Prob(JB): 0.324
Kurtosis: 2.992 Cond. No. 58.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:46:05 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.074
Method: Least Squares F-statistic: 0.03795
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.849
Time: 04:46:05 Log-Likelihood: -75.278
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.5483 88.455 0.865 0.403 -114.547 267.644
expression 2.7187 13.956 0.195 0.849 -27.430 32.868
Omnibus: 1.089 Durbin-Watson: 1.645
Prob(Omnibus): 0.580 Jarque-Bera (JB): 0.746
Skew: 0.102 Prob(JB): 0.689
Kurtosis: 1.927 Cond. No. 56.6