AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.040 | 0.844 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.595 |
Method: | Least Squares | F-statistic: | 11.75 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000140 |
Time: | 22:48:43 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 91.5821 | 187.874 | 0.487 | 0.632 | -301.642 484.807 |
C(dose)[T.1] | 30.2786 | 301.603 | 0.100 | 0.921 | -600.983 661.540 |
expression | -4.2474 | 21.339 | -0.199 | 0.844 | -48.911 40.417 |
expression:C(dose)[T.1] | 2.6106 | 34.388 | 0.076 | 0.940 | -69.364 74.586 |
Omnibus: | 0.481 | Durbin-Watson: | 1.825 |
Prob(Omnibus): | 0.786 | Jarque-Bera (JB): | 0.569 |
Skew: | 0.044 | Prob(JB): | 0.752 |
Kurtosis: | 2.235 | Cond. No. | 737. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.55 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.78e-05 |
Time: | 22:48:43 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 82.7362 | 143.665 | 0.576 | 0.571 | -216.944 382.417 |
C(dose)[T.1] | 53.1652 | 8.804 | 6.039 | 0.000 | 34.801 71.530 |
expression | -3.2421 | 16.312 | -0.199 | 0.844 | -37.269 30.785 |
Omnibus: | 0.539 | Durbin-Watson: | 1.842 |
Prob(Omnibus): | 0.764 | Jarque-Bera (JB): | 0.599 |
Skew: | 0.061 | Prob(JB): | 0.741 |
Kurtosis: | 2.219 | Cond. No. | 292. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:48:43 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.011 |
Model: | OLS | Adj. R-squared: | -0.036 |
Method: | Least Squares | F-statistic: | 0.2357 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.632 |
Time: | 22:48:43 | Log-Likelihood: | -112.98 |
No. Observations: | 23 | AIC: | 230.0 |
Df Residuals: | 21 | BIC: | 232.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 193.0965 | 233.669 | 0.826 | 0.418 | -292.845 679.038 |
expression | -12.9224 | 26.620 | -0.485 | 0.632 | -68.281 42.437 |
Omnibus: | 2.497 | Durbin-Watson: | 2.505 |
Prob(Omnibus): | 0.287 | Jarque-Bera (JB): | 1.404 |
Skew: | 0.297 | Prob(JB): | 0.496 |
Kurtosis: | 1.945 | Cond. No. | 290. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.442 | 0.519 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.548 |
Model: | OLS | Adj. R-squared: | 0.425 |
Method: | Least Squares | F-statistic: | 4.448 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0280 |
Time: | 22:48:43 | Log-Likelihood: | -69.342 |
No. Observations: | 15 | AIC: | 146.7 |
Df Residuals: | 11 | BIC: | 149.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -565.6348 | 408.348 | -1.385 | 0.193 | -1464.402 333.132 |
C(dose)[T.1] | 711.6367 | 475.356 | 1.497 | 0.163 | -334.615 1757.889 |
expression | 72.1396 | 46.516 | 1.551 | 0.149 | -30.241 174.521 |
expression:C(dose)[T.1] | -75.4915 | 54.160 | -1.394 | 0.191 | -194.697 43.714 |
Omnibus: | 2.825 | Durbin-Watson: | 1.265 |
Prob(Omnibus): | 0.244 | Jarque-Bera (JB): | 1.465 |
Skew: | -0.765 | Prob(JB): | 0.481 |
Kurtosis: | 3.072 | Cond. No. | 841. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.468 |
Model: | OLS | Adj. R-squared: | 0.380 |
Method: | Least Squares | F-statistic: | 5.286 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0226 |
Time: | 22:48:43 | Log-Likelihood: | -70.562 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -76.9630 | 217.437 | -0.354 | 0.730 | -550.717 396.791 |
C(dose)[T.1] | 49.3828 | 15.460 | 3.194 | 0.008 | 15.698 83.067 |
expression | 16.4539 | 24.744 | 0.665 | 0.519 | -37.459 70.367 |
Omnibus: | 3.555 | Durbin-Watson: | 0.754 |
Prob(Omnibus): | 0.169 | Jarque-Bera (JB): | 2.190 |
Skew: | -0.935 | Prob(JB): | 0.335 |
Kurtosis: | 2.906 | Cond. No. | 251. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:48:43 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.016 |
Model: | OLS | Adj. R-squared: | -0.059 |
Method: | Least Squares | F-statistic: | 0.2158 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.650 |
Time: | 22:48:44 | Log-Likelihood: | -75.177 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -38.0625 | 283.718 | -0.134 | 0.895 | -650.997 574.872 |
expression | 15.0213 | 32.332 | 0.465 | 0.650 | -54.829 84.871 |
Omnibus: | 1.633 | Durbin-Watson: | 1.743 |
Prob(Omnibus): | 0.442 | Jarque-Bera (JB): | 0.899 |
Skew: | 0.145 | Prob(JB): | 0.638 |
Kurtosis: | 1.836 | Cond. No. | 250. |