AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.071 | 0.792 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.680 |
Model: | OLS | Adj. R-squared: | 0.630 |
Method: | Least Squares | F-statistic: | 13.48 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.00e-05 |
Time: | 05:00:54 | Log-Likelihood: | -99.989 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 19 | BIC: | 212.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -80.7730 | 120.124 | -0.672 | 0.509 | -332.196 170.650 |
C(dose)[T.1] | 284.7182 | 173.513 | 1.641 | 0.117 | -78.448 647.885 |
expression | 17.9689 | 15.972 | 1.125 | 0.275 | -15.460 51.398 |
expression:C(dose)[T.1] | -30.6932 | 22.969 | -1.336 | 0.197 | -78.767 17.381 |
Omnibus: | 0.688 | Durbin-Watson: | 2.216 |
Prob(Omnibus): | 0.709 | Jarque-Bera (JB): | 0.070 |
Skew: | -0.095 | Prob(JB): | 0.966 |
Kurtosis: | 3.191 | Cond. No. | 400. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.60 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.73e-05 |
Time: | 05:00:54 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 30.7133 | 88.108 | 0.349 | 0.731 | -153.077 214.504 |
C(dose)[T.1] | 53.1368 | 8.786 | 6.048 | 0.000 | 34.809 71.465 |
expression | 3.1277 | 11.701 | 0.267 | 0.792 | -21.281 27.536 |
Omnibus: | 0.549 | Durbin-Watson: | 1.984 |
Prob(Omnibus): | 0.760 | Jarque-Bera (JB): | 0.609 |
Skew: | 0.091 | Prob(JB): | 0.738 |
Kurtosis: | 2.224 | Cond. No. | 155. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:00:54 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.011 |
Model: | OLS | Adj. R-squared: | -0.036 |
Method: | Least Squares | F-statistic: | 0.2293 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.637 |
Time: | 05:00:54 | Log-Likelihood: | -112.98 |
No. Observations: | 23 | AIC: | 230.0 |
Df Residuals: | 21 | BIC: | 232.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 10.6018 | 144.514 | 0.073 | 0.942 | -289.931 311.135 |
expression | 9.1634 | 19.136 | 0.479 | 0.637 | -30.632 48.959 |
Omnibus: | 3.350 | Durbin-Watson: | 2.589 |
Prob(Omnibus): | 0.187 | Jarque-Bera (JB): | 1.769 |
Skew: | 0.391 | Prob(JB): | 0.413 |
Kurtosis: | 1.889 | Cond. No. | 155. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.011 | 0.917 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.455 |
Model: | OLS | Adj. R-squared: | 0.306 |
Method: | Least Squares | F-statistic: | 3.055 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0737 |
Time: | 05:00:54 | Log-Likelihood: | -70.755 |
No. Observations: | 15 | AIC: | 149.5 |
Df Residuals: | 11 | BIC: | 152.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 81.6411 | 86.019 | 0.949 | 0.363 | -107.685 270.967 |
C(dose)[T.1] | 14.3568 | 111.217 | 0.129 | 0.900 | -230.431 259.144 |
expression | -2.1297 | 12.765 | -0.167 | 0.871 | -30.226 25.966 |
expression:C(dose)[T.1] | 5.6724 | 17.489 | 0.324 | 0.752 | -32.821 44.166 |
Omnibus: | 2.834 | Durbin-Watson: | 0.895 |
Prob(Omnibus): | 0.242 | Jarque-Bera (JB): | 1.785 |
Skew: | -0.838 | Prob(JB): | 0.410 |
Kurtosis: | 2.789 | Cond. No. | 119. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.895 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0279 |
Time: | 05:00:54 | Log-Likelihood: | -70.826 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 61.4749 | 57.183 | 1.075 | 0.303 | -63.116 186.066 |
C(dose)[T.1] | 49.9555 | 17.278 | 2.891 | 0.014 | 12.311 87.600 |
expression | 0.8922 | 8.394 | 0.106 | 0.917 | -17.397 19.181 |
Omnibus: | 2.904 | Durbin-Watson: | 0.811 |
Prob(Omnibus): | 0.234 | Jarque-Bera (JB): | 1.946 |
Skew: | -0.868 | Prob(JB): | 0.378 |
Kurtosis: | 2.684 | Cond. No. | 47.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:00:54 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.066 |
Model: | OLS | Adj. R-squared: | -0.006 |
Method: | Least Squares | F-statistic: | 0.9132 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.357 |
Time: | 05:00:54 | Log-Likelihood: | -74.791 |
No. Observations: | 15 | AIC: | 153.6 |
Df Residuals: | 13 | BIC: | 155.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 150.5172 | 60.298 | 2.496 | 0.027 | 20.251 280.783 |
expression | -9.1406 | 9.565 | -0.956 | 0.357 | -29.805 11.524 |
Omnibus: | 2.802 | Durbin-Watson: | 1.460 |
Prob(Omnibus): | 0.246 | Jarque-Bera (JB): | 1.103 |
Skew: | 0.086 | Prob(JB): | 0.576 |
Kurtosis: | 1.683 | Cond. No. | 39.6 |