AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
9.835 0.005 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.768
Model: OLS Adj. R-squared: 0.731
Method: Least Squares F-statistic: 20.91
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.07e-06
Time: 04:14:46 Log-Likelihood: -96.325
No. Observations: 23 AIC: 200.6
Df Residuals: 19 BIC: 205.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -128.7463 83.400 -1.544 0.139 -303.305 45.813
C(dose)[T.1] 109.5348 101.449 1.080 0.294 -102.801 321.871
expression 55.0529 25.050 2.198 0.041 2.623 107.483
expression:C(dose)[T.1] -14.8597 30.986 -0.480 0.637 -79.714 49.995
Omnibus: 2.814 Durbin-Watson: 2.535
Prob(Omnibus): 0.245 Jarque-Bera (JB): 1.287
Skew: 0.473 Prob(JB): 0.525
Kurtosis: 3.668 Cond. No. 137.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.765
Model: OLS Adj. R-squared: 0.741
Method: Least Squares F-statistic: 32.51
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.19e-07
Time: 04:14:46 Log-Likelihood: -96.463
No. Observations: 23 AIC: 198.9
Df Residuals: 20 BIC: 202.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -96.4727 48.303 -1.997 0.060 -197.230 4.285
C(dose)[T.1] 61.0254 7.587 8.043 0.000 45.199 76.852
expression 45.3415 14.458 3.136 0.005 15.183 75.500
Omnibus: 3.789 Durbin-Watson: 2.522
Prob(Omnibus): 0.150 Jarque-Bera (JB): 1.986
Skew: 0.588 Prob(JB): 0.370
Kurtosis: 3.830 Cond. No. 48.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:14:46 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.044
Method: Least Squares F-statistic: 0.07994
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.780
Time: 04:14:46 Log-Likelihood: -113.06
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.5306 89.376 0.610 0.548 -131.336 240.398
expression 7.7685 27.477 0.283 0.780 -49.373 64.910
Omnibus: 3.056 Durbin-Watson: 2.579
Prob(Omnibus): 0.217 Jarque-Bera (JB): 1.498
Skew: 0.276 Prob(JB): 0.473
Kurtosis: 1.878 Cond. No. 44.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.071 0.176 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.612
Model: OLS Adj. R-squared: 0.506
Method: Least Squares F-statistic: 5.778
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0127
Time: 04:14:46 Log-Likelihood: -68.203
No. Observations: 15 AIC: 144.4
Df Residuals: 11 BIC: 147.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 15.2971 157.691 0.097 0.924 -331.778 362.372
C(dose)[T.1] 356.3255 198.430 1.796 0.100 -80.417 793.068
expression 15.4616 46.674 0.331 0.747 -87.266 118.189
expression:C(dose)[T.1] -88.1673 57.885 -1.523 0.156 -215.571 39.236
Omnibus: 1.407 Durbin-Watson: 0.838
Prob(Omnibus): 0.495 Jarque-Bera (JB): 1.137
Skew: -0.512 Prob(JB): 0.566
Kurtosis: 2.122 Cond. No. 154.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.530
Model: OLS Adj. R-squared: 0.452
Method: Least Squares F-statistic: 6.764
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0108
Time: 04:14:46 Log-Likelihood: -69.639
No. Observations: 15 AIC: 145.3
Df Residuals: 12 BIC: 147.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 208.5679 98.640 2.114 0.056 -6.349 423.485
C(dose)[T.1] 54.8713 15.060 3.643 0.003 22.057 87.685
expression -41.8602 29.085 -1.439 0.176 -105.232 21.511
Omnibus: 2.608 Durbin-Watson: 0.939
Prob(Omnibus): 0.271 Jarque-Bera (JB): 1.604
Skew: -0.568 Prob(JB): 0.448
Kurtosis: 1.871 Cond. No. 51.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:14:46 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.010
Model: OLS Adj. R-squared: -0.066
Method: Least Squares F-statistic: 0.1301
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.724
Time: 04:14:46 Log-Likelihood: -75.225
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 142.2805 135.177 1.053 0.312 -149.753 434.314
expression -14.1156 39.140 -0.361 0.724 -98.673 70.442
Omnibus: 0.328 Durbin-Watson: 1.652
Prob(Omnibus): 0.849 Jarque-Bera (JB): 0.465
Skew: 0.004 Prob(JB): 0.793
Kurtosis: 2.138 Cond. No. 50.0