AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.186 0.289 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.681
Model: OLS Adj. R-squared: 0.630
Method: Least Squares F-statistic: 13.51
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.92e-05
Time: 04:14:12 Log-Likelihood: -99.972
No. Observations: 23 AIC: 207.9
Df Residuals: 19 BIC: 212.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 457.8503 295.601 1.549 0.138 -160.849 1076.549
C(dose)[T.1] -302.3688 424.279 -0.713 0.485 -1190.394 585.656
expression -42.7072 31.270 -1.366 0.188 -108.155 22.741
expression:C(dose)[T.1] 37.7316 44.445 0.849 0.406 -55.293 130.756
Omnibus: 0.753 Durbin-Watson: 1.901
Prob(Omnibus): 0.686 Jarque-Bera (JB): 0.719
Skew: -0.149 Prob(JB): 0.698
Kurtosis: 2.187 Cond. No. 1.23e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.636
Method: Least Squares F-statistic: 20.18
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.59e-05
Time: 04:14:12 Log-Likelihood: -100.40
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 281.3273 208.634 1.348 0.193 -153.876 716.531
C(dose)[T.1] 57.7333 9.429 6.123 0.000 38.065 77.401
expression -24.0302 22.066 -1.089 0.289 -70.058 21.998
Omnibus: 0.387 Durbin-Watson: 1.819
Prob(Omnibus): 0.824 Jarque-Bera (JB): 0.533
Skew: -0.146 Prob(JB): 0.766
Kurtosis: 2.314 Cond. No. 474.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:14:13 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.048
Model: OLS Adj. R-squared: 0.002
Method: Least Squares F-statistic: 1.050
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.317
Time: 04:14:13 Log-Likelihood: -112.54
No. Observations: 23 AIC: 229.1
Df Residuals: 21 BIC: 231.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -242.8524 314.811 -0.771 0.449 -897.538 411.834
expression 33.8163 32.995 1.025 0.317 -34.800 102.433
Omnibus: 3.059 Durbin-Watson: 2.496
Prob(Omnibus): 0.217 Jarque-Bera (JB): 1.395
Skew: 0.195 Prob(JB): 0.498
Kurtosis: 1.858 Cond. No. 431.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.477 0.056 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.553
Method: Least Squares F-statistic: 6.774
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00749
Time: 04:14:13 Log-Likelihood: -67.452
No. Observations: 15 AIC: 142.9
Df Residuals: 11 BIC: 145.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -290.0446 327.446 -0.886 0.395 -1010.748 430.659
C(dose)[T.1] -701.0204 590.912 -1.186 0.260 -2001.610 599.569
expression 37.6619 34.484 1.092 0.298 -38.236 113.560
expression:C(dose)[T.1] 77.2787 61.591 1.255 0.236 -58.283 212.840
Omnibus: 0.766 Durbin-Watson: 0.815
Prob(Omnibus): 0.682 Jarque-Bera (JB): 0.659
Skew: -0.146 Prob(JB): 0.719
Kurtosis: 2.015 Cond. No. 1.08e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.599
Model: OLS Adj. R-squared: 0.532
Method: Least Squares F-statistic: 8.946
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00419
Time: 04:14:13 Log-Likelihood: -68.455
No. Observations: 15 AIC: 142.9
Df Residuals: 12 BIC: 145.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -519.9698 277.784 -1.872 0.086 -1125.210 85.270
C(dose)[T.1] 40.1970 14.089 2.853 0.015 9.499 70.895
expression 61.8859 29.248 2.116 0.056 -1.840 125.612
Omnibus: 3.589 Durbin-Watson: 0.859
Prob(Omnibus): 0.166 Jarque-Bera (JB): 1.437
Skew: -0.346 Prob(JB): 0.487
Kurtosis: 1.651 Cond. No. 402.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:14:13 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.326
Model: OLS Adj. R-squared: 0.274
Method: Least Squares F-statistic: 6.295
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0261
Time: 04:14:13 Log-Likelihood: -72.338
No. Observations: 15 AIC: 148.7
Df Residuals: 13 BIC: 150.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -739.5754 332.209 -2.226 0.044 -1457.270 -21.881
expression 87.0754 34.706 2.509 0.026 12.099 162.052
Omnibus: 2.087 Durbin-Watson: 2.176
Prob(Omnibus): 0.352 Jarque-Bera (JB): 0.988
Skew: 0.126 Prob(JB): 0.610
Kurtosis: 1.768 Cond. No. 385.