AIM Score vs. Gene Expression 
		Full X range:
		
 
		 
			
		
		Auto X range:
		
 
		
		Group Comparisons: Boxplots
		 
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.183 | 0.673 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.660 | 
  | Model: | OLS | Adj. R-squared: | 0.607 | 
  | Method: | Least Squares | F-statistic: | 12.32 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.000105 | 
  | Time: | 04:51:12 | Log-Likelihood: | -100.68 | 
  | No. Observations: | 23 | AIC: | 209.4 | 
  | Df Residuals: | 19 | BIC: | 213.9 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 43.8157 | 66.023 | 0.664 | 0.515 | -94.373   182.004 | 
  | C(dose)[T.1] | 118.9783 | 96.940 | 1.227 | 0.235 | -83.919   321.876 | 
  | expression | 1.8752 | 11.862 | 0.158 | 0.876 | -22.952    26.702 | 
  | expression:C(dose)[T.1] | -11.6837 | 17.269 | -0.677 | 0.507 | -47.828    24.460 | 
  | Omnibus: | 0.058 | Durbin-Watson: | 1.798 | 
  | Prob(Omnibus): | 0.971 | Jarque-Bera (JB): | 0.281 | 
  | Skew: | 0.010 | Prob(JB): | 0.869 | 
  | Kurtosis: | 2.459 | Cond. No. | 162. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.652 | 
  | Model: | OLS | Adj. R-squared: | 0.617 | 
  | Method: | Least Squares | F-statistic: | 18.76 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 2.59e-05 | 
  | Time: | 04:51:12 | Log-Likelihood: | -100.96 | 
  | No. Observations: | 23 | AIC: | 207.9 | 
  | Df Residuals: | 20 | BIC: | 211.3 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 74.3671 | 47.509 | 1.565 | 0.133 | -24.736   173.470 | 
  | C(dose)[T.1] | 53.6670 | 8.764 | 6.124 | 0.000 | 35.386    71.948 | 
  | expression | -3.6374 | 8.503 | -0.428 | 0.673 | -21.374    14.100 | 
  | Omnibus: | 0.505 | Durbin-Watson: | 1.838 | 
  | Prob(Omnibus): | 0.777 | Jarque-Bera (JB): | 0.580 | 
  | Skew: | 0.046 | Prob(JB): | 0.748 | 
  | Kurtosis: | 2.227 | Cond. No. | 63.3 | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.632 | 
  | Method: | Least Squares | F-statistic: | 38.84 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 3.51e-06 | 
  | Time: | 04:51:12 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 206.1 | 
  | Df Residuals: | 21 | BIC: | 208.4 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900    66.517 | 
  | C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539    71.135 | 
  | Omnibus: | 0.322 | Durbin-Watson: | 1.888 | 
  | Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 | 
  | Skew: | 0.060 | Prob(JB): | 0.785 | 
  | Kurtosis: | 2.299 | Cond. No. | 2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.000 | 
  | Model: | OLS | Adj. R-squared: | -0.047 | 
  | Method: | Least Squares | F-statistic: | 0.004537 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.947 | 
  | Time: | 04:51:12 | Log-Likelihood: | -113.10 | 
  | No. Observations: | 23 | AIC: | 230.2 | 
  | Df Residuals: | 21 | BIC: | 232.5 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 74.4446 | 78.613 | 0.947 | 0.354 | -89.041   237.930 | 
  | expression | 0.9440 | 14.015 | 0.067 | 0.947 | -28.202    30.090 | 
  | Omnibus: | 3.257 | Durbin-Watson: | 2.480 | 
  | Prob(Omnibus): | 0.196 | Jarque-Bera (JB): | 1.570 | 
  | Skew: | 0.296 | Prob(JB): | 0.456 | 
  | Kurtosis: | 1.865 | Cond. No. | 63.0 | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.014 | 0.908 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.453 | 
  | Model: | OLS | Adj. R-squared: | 0.304 | 
  | Method: | Least Squares | F-statistic: | 3.035 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0748 | 
  | Time: | 04:51:12 | Log-Likelihood: | -70.777 | 
  | No. Observations: | 15 | AIC: | 149.6 | 
  | Df Residuals: | 11 | BIC: | 152.4 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 96.3084 | 205.379 | 0.469 | 0.648 | -355.727   548.344 | 
  | C(dose)[T.1] | -15.2461 | 249.635 | -0.061 | 0.952 | -564.689   534.197 | 
  | expression | -5.3962 | 38.310 | -0.141 | 0.891 | -89.716    78.923 | 
  | expression:C(dose)[T.1] | 12.8353 | 48.408 | 0.265 | 0.796 | -93.710   119.380 | 
  | Omnibus: | 2.446 | Durbin-Watson: | 0.856 | 
  | Prob(Omnibus): | 0.294 | Jarque-Bera (JB): | 1.709 | 
  | Skew: | -0.800 | Prob(JB): | 0.425 | 
  | Kurtosis: | 2.580 | Cond. No. | 226. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.358 | 
  | Method: | Least Squares | F-statistic: | 4.897 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0279 | 
  | Time: | 04:51:12 | Log-Likelihood: | -70.824 | 
  | No. Observations: | 15 | AIC: | 147.6 | 
  | Df Residuals: | 12 | BIC: | 149.8 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 53.2853 | 120.929 | 0.441 | 0.667 | -210.196   316.767 | 
  | C(dose)[T.1] | 50.7063 | 20.313 | 2.496 | 0.028 | 6.448    94.964 | 
  | expression | 2.6427 | 22.493 | 0.117 | 0.908 | -46.366    51.652 | 
  | Omnibus: | 2.765 | Durbin-Watson: | 0.806 | 
  | Prob(Omnibus): | 0.251 | Jarque-Bera (JB): | 1.922 | 
  | Skew: | -0.854 | Prob(JB): | 0.383 | 
  | Kurtosis: | 2.602 | Cond. No. | 81.8 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.406 | 
  | Method: | Least Squares | F-statistic: | 10.58 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00629 | 
  | Time: | 04:51:12 | Log-Likelihood: | -70.833 | 
  | No. Observations: | 15 | AIC: | 145.7 | 
  | Df Residuals: | 13 | BIC: | 147.1 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570    91.287 | 
  | C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527    81.866 | 
  | Omnibus: | 2.713 | Durbin-Watson: | 0.810 | 
  | Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 | 
  | Skew: | -0.843 | Prob(JB): | 0.393 | 
  | Kurtosis: | 2.619 | Cond. No. | 2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.163 | 
  | Model: | OLS | Adj. R-squared: | 0.099 | 
  | Method: | Least Squares | F-statistic: | 2.541 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.135 | 
  | Time: | 04:51:12 | Log-Likelihood: | -73.961 | 
  | No. Observations: | 15 | AIC: | 151.9 | 
  | Df Residuals: | 13 | BIC: | 153.3 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 259.6270 | 104.528 | 2.484 | 0.027 | 33.807   485.447 | 
  | expression | -32.8819 | 20.628 | -1.594 | 0.135 | -77.447    11.683 | 
  | Omnibus: | 0.325 | Durbin-Watson: | 1.332 | 
  | Prob(Omnibus): | 0.850 | Jarque-Bera (JB): | 0.472 | 
  | Skew: | 0.194 | Prob(JB): | 0.790 | 
  | Kurtosis: | 2.223 | Cond. No. | 59.2 |