AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.183 0.673 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.660
Model: OLS Adj. R-squared: 0.607
Method: Least Squares F-statistic: 12.32
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000105
Time: 04:49:06 Log-Likelihood: -100.68
No. Observations: 23 AIC: 209.4
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 43.8157 66.023 0.664 0.515 -94.373 182.004
C(dose)[T.1] 118.9783 96.940 1.227 0.235 -83.919 321.876
expression 1.8752 11.862 0.158 0.876 -22.952 26.702
expression:C(dose)[T.1] -11.6837 17.269 -0.677 0.507 -47.828 24.460
Omnibus: 0.058 Durbin-Watson: 1.798
Prob(Omnibus): 0.971 Jarque-Bera (JB): 0.281
Skew: 0.010 Prob(JB): 0.869
Kurtosis: 2.459 Cond. No. 162.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.76
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.59e-05
Time: 04:49:07 Log-Likelihood: -100.96
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 74.3671 47.509 1.565 0.133 -24.736 173.470
C(dose)[T.1] 53.6670 8.764 6.124 0.000 35.386 71.948
expression -3.6374 8.503 -0.428 0.673 -21.374 14.100
Omnibus: 0.505 Durbin-Watson: 1.838
Prob(Omnibus): 0.777 Jarque-Bera (JB): 0.580
Skew: 0.046 Prob(JB): 0.748
Kurtosis: 2.227 Cond. No. 63.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:49:07 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.004537
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.947
Time: 04:49:07 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 74.4446 78.613 0.947 0.354 -89.041 237.930
expression 0.9440 14.015 0.067 0.947 -28.202 30.090
Omnibus: 3.257 Durbin-Watson: 2.480
Prob(Omnibus): 0.196 Jarque-Bera (JB): 1.570
Skew: 0.296 Prob(JB): 0.456
Kurtosis: 1.865 Cond. No. 63.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.014 0.908 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.453
Model: OLS Adj. R-squared: 0.304
Method: Least Squares F-statistic: 3.035
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0748
Time: 04:49:07 Log-Likelihood: -70.777
No. Observations: 15 AIC: 149.6
Df Residuals: 11 BIC: 152.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 96.3084 205.379 0.469 0.648 -355.727 548.344
C(dose)[T.1] -15.2461 249.635 -0.061 0.952 -564.689 534.197
expression -5.3962 38.310 -0.141 0.891 -89.716 78.923
expression:C(dose)[T.1] 12.8353 48.408 0.265 0.796 -93.710 119.380
Omnibus: 2.446 Durbin-Watson: 0.856
Prob(Omnibus): 0.294 Jarque-Bera (JB): 1.709
Skew: -0.800 Prob(JB): 0.425
Kurtosis: 2.580 Cond. No. 226.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.897
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0279
Time: 04:49:07 Log-Likelihood: -70.824
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 53.2853 120.929 0.441 0.667 -210.196 316.767
C(dose)[T.1] 50.7063 20.313 2.496 0.028 6.448 94.964
expression 2.6427 22.493 0.117 0.908 -46.366 51.652
Omnibus: 2.765 Durbin-Watson: 0.806
Prob(Omnibus): 0.251 Jarque-Bera (JB): 1.922
Skew: -0.854 Prob(JB): 0.383
Kurtosis: 2.602 Cond. No. 81.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:49:07 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.163
Model: OLS Adj. R-squared: 0.099
Method: Least Squares F-statistic: 2.541
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.135
Time: 04:49:07 Log-Likelihood: -73.961
No. Observations: 15 AIC: 151.9
Df Residuals: 13 BIC: 153.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 259.6270 104.528 2.484 0.027 33.807 485.447
expression -32.8819 20.628 -1.594 0.135 -77.447 11.683
Omnibus: 0.325 Durbin-Watson: 1.332
Prob(Omnibus): 0.850 Jarque-Bera (JB): 0.472
Skew: 0.194 Prob(JB): 0.790
Kurtosis: 2.223 Cond. No. 59.2