AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.058 | 0.812 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.661 |
Model: | OLS | Adj. R-squared: | 0.608 |
Method: | Least Squares | F-statistic: | 12.37 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000103 |
Time: | 03:55:59 | Log-Likelihood: | -100.65 |
No. Observations: | 23 | AIC: | 209.3 |
Df Residuals: | 19 | BIC: | 213.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 350.6319 | 418.822 | 0.837 | 0.413 | -525.972 1227.235 |
C(dose)[T.1] | -443.9435 | 625.284 | -0.710 | 0.486 | -1752.679 864.792 |
expression | -29.6824 | 41.934 | -0.708 | 0.488 | -117.452 58.087 |
expression:C(dose)[T.1] | 49.9329 | 62.843 | 0.795 | 0.437 | -81.600 181.466 |
Omnibus: | 0.777 | Durbin-Watson: | 2.080 |
Prob(Omnibus): | 0.678 | Jarque-Bera (JB): | 0.747 |
Skew: | 0.185 | Prob(JB): | 0.688 |
Kurtosis: | 2.199 | Cond. No. | 1.80e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.75e-05 |
Time: | 03:55:59 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 128.5978 | 309.078 | 0.416 | 0.682 | -516.129 773.324 |
C(dose)[T.1] | 52.8311 | 9.006 | 5.866 | 0.000 | 34.045 71.617 |
expression | -7.4490 | 30.944 | -0.241 | 0.812 | -71.996 57.098 |
Omnibus: | 0.145 | Durbin-Watson: | 1.900 |
Prob(Omnibus): | 0.930 | Jarque-Bera (JB): | 0.364 |
Skew: | 0.024 | Prob(JB): | 0.834 |
Kurtosis: | 2.386 | Cond. No. | 711. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:55:59 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.048 |
Model: | OLS | Adj. R-squared: | 0.003 |
Method: | Least Squares | F-statistic: | 1.058 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.315 |
Time: | 03:55:59 | Log-Likelihood: | -112.54 |
No. Observations: | 23 | AIC: | 229.1 |
Df Residuals: | 21 | BIC: | 231.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 575.5770 | 482.167 | 1.194 | 0.246 | -427.144 1578.298 |
expression | -49.8150 | 48.434 | -1.029 | 0.315 | -150.539 50.909 |
Omnibus: | 4.530 | Durbin-Watson: | 2.427 |
Prob(Omnibus): | 0.104 | Jarque-Bera (JB): | 1.840 |
Skew: | 0.318 | Prob(JB): | 0.399 |
Kurtosis: | 1.769 | Cond. No. | 689. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.075 | 0.789 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.558 |
Model: | OLS | Adj. R-squared: | 0.437 |
Method: | Least Squares | F-statistic: | 4.627 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0251 |
Time: | 03:55:59 | Log-Likelihood: | -69.179 |
No. Observations: | 15 | AIC: | 146.4 |
Df Residuals: | 11 | BIC: | 149.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -473.4029 | 576.047 | -0.822 | 0.429 | -1741.273 794.467 |
C(dose)[T.1] | 1360.7818 | 810.002 | 1.680 | 0.121 | -422.021 3143.585 |
expression | 55.8117 | 59.435 | 0.939 | 0.368 | -75.005 186.628 |
expression:C(dose)[T.1] | -136.4232 | 84.134 | -1.621 | 0.133 | -321.601 48.755 |
Omnibus: | 1.076 | Durbin-Watson: | 1.192 |
Prob(Omnibus): | 0.584 | Jarque-Bera (JB): | 0.837 |
Skew: | -0.520 | Prob(JB): | 0.658 |
Kurtosis: | 2.492 | Cond. No. | 1.42e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.452 |
Model: | OLS | Adj. R-squared: | 0.361 |
Method: | Least Squares | F-statistic: | 4.953 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0270 |
Time: | 03:55:59 | Log-Likelihood: | -70.786 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 186.3328 | 434.585 | 0.429 | 0.676 | -760.547 1133.213 |
C(dose)[T.1] | 47.6141 | 16.722 | 2.847 | 0.015 | 11.180 84.048 |
expression | -12.2704 | 44.832 | -0.274 | 0.789 | -109.951 85.410 |
Omnibus: | 2.312 | Durbin-Watson: | 0.826 |
Prob(Omnibus): | 0.315 | Jarque-Bera (JB): | 1.670 |
Skew: | -0.780 | Prob(JB): | 0.434 |
Kurtosis: | 2.510 | Cond. No. | 541. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:55:59 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.082 |
Model: | OLS | Adj. R-squared: | 0.011 |
Method: | Least Squares | F-statistic: | 1.162 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.301 |
Time: | 03:55:59 | Log-Likelihood: | -74.658 |
No. Observations: | 15 | AIC: | 153.3 |
Df Residuals: | 13 | BIC: | 154.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 636.3639 | 503.476 | 1.264 | 0.228 | -451.331 1724.059 |
expression | -56.4045 | 52.318 | -1.078 | 0.301 | -169.432 56.622 |
Omnibus: | 0.483 | Durbin-Watson: | 1.519 |
Prob(Omnibus): | 0.786 | Jarque-Bera (JB): | 0.547 |
Skew: | -0.135 | Prob(JB): | 0.761 |
Kurtosis: | 2.105 | Cond. No. | 503. |