AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
| F-statistic | p-value | df difference |
| 0.049 | 0.828 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.683 |
| Model: | OLS | Adj. R-squared: | 0.633 |
| Method: | Least Squares | F-statistic: | 13.63 |
| Date: | Sun, 26 Oct 2025 | Prob (F-statistic): | 5.60e-05 |
| Time: | 03:06:57 | Log-Likelihood: | -99.904 |
| No. Observations: | 23 | AIC: | 207.8 |
| Df Residuals: | 19 | BIC: | 212.3 |
| Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 9.2251 | 49.649 | 0.186 | 0.855 | -94.692 113.142 |
| C(dose)[T.1] | 148.4547 | 68.038 | 2.182 | 0.042 | 6.050 290.859 |
| expression | 10.1670 | 11.142 | 0.913 | 0.373 | -13.153 33.487 |
| expression:C(dose)[T.1] | -20.6401 | 14.728 | -1.401 | 0.177 | -51.466 10.186 |
| Omnibus: | 0.279 | Durbin-Watson: | 1.845 |
| Prob(Omnibus): | 0.870 | Jarque-Bera (JB): | 0.254 |
| Skew: | 0.212 | Prob(JB): | 0.881 |
| Kurtosis: | 2.708 | Cond. No. | 103. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.650 |
| Model: | OLS | Adj. R-squared: | 0.615 |
| Method: | Least Squares | F-statistic: | 18.56 |
| Date: | Sun, 26 Oct 2025 | Prob (F-statistic): | 2.77e-05 |
| Time: | 03:06:57 | Log-Likelihood: | -101.03 |
| No. Observations: | 23 | AIC: | 208.1 |
| Df Residuals: | 20 | BIC: | 211.5 |
| Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 61.4871 | 33.558 | 1.832 | 0.082 | -8.514 131.488 |
| C(dose)[T.1] | 53.9335 | 9.167 | 5.883 | 0.000 | 34.811 73.056 |
| expression | -1.6451 | 7.460 | -0.221 | 0.828 | -17.207 13.916 |
| Omnibus: | 0.449 | Durbin-Watson: | 1.866 |
| Prob(Omnibus): | 0.799 | Jarque-Bera (JB): | 0.554 |
| Skew: | 0.053 | Prob(JB): | 0.758 |
| Kurtosis: | 2.247 | Cond. No. | 37.5 |
Model:
AIM ~ C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.649 |
| Model: | OLS | Adj. R-squared: | 0.632 |
| Method: | Least Squares | F-statistic: | 38.84 |
| Date: | Sun, 26 Oct 2025 | Prob (F-statistic): | 3.51e-06 |
| Time: | 03:06:57 | Log-Likelihood: | -101.06 |
| No. Observations: | 23 | AIC: | 206.1 |
| Df Residuals: | 21 | BIC: | 208.4 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
| C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
| Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
| Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
| Skew: | 0.060 | Prob(JB): | 0.785 |
| Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.044 |
| Model: | OLS | Adj. R-squared: | -0.002 |
| Method: | Least Squares | F-statistic: | 0.9667 |
| Date: | Sun, 26 Oct 2025 | Prob (F-statistic): | 0.337 |
| Time: | 03:06:57 | Log-Likelihood: | -112.59 |
| No. Observations: | 23 | AIC: | 229.2 |
| Df Residuals: | 21 | BIC: | 231.4 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 27.7525 | 53.322 | 0.520 | 0.608 | -83.136 138.641 |
| expression | 11.3021 | 11.495 | 0.983 | 0.337 | -12.604 35.208 |
| Omnibus: | 2.992 | Durbin-Watson: | 2.257 |
| Prob(Omnibus): | 0.224 | Jarque-Bera (JB): | 1.909 |
| Skew: | 0.489 | Prob(JB): | 0.385 |
| Kurtosis: | 1.982 | Cond. No. | 36.7 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
| F-statistic | p-value | df difference |
| 2.135 | 0.170 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.821 |
| Model: | OLS | Adj. R-squared: | 0.772 |
| Method: | Least Squares | F-statistic: | 16.80 |
| Date: | Sun, 26 Oct 2025 | Prob (F-statistic): | 0.000203 |
| Time: | 03:06:57 | Log-Likelihood: | -62.404 |
| No. Observations: | 15 | AIC: | 132.8 |
| Df Residuals: | 11 | BIC: | 135.6 |
| Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | -42.2070 | 112.049 | -0.377 | 0.714 | -288.826 204.412 |
| C(dose)[T.1] | 744.4813 | 168.135 | 4.428 | 0.001 | 374.419 1114.543 |
| expression | 22.1130 | 22.558 | 0.980 | 0.348 | -27.536 71.762 |
| expression:C(dose)[T.1] | -147.5795 | 35.046 | -4.211 | 0.001 | -224.714 -70.445 |
| Omnibus: | 0.838 | Durbin-Watson: | 2.033 |
| Prob(Omnibus): | 0.658 | Jarque-Bera (JB): | 0.203 |
| Skew: | -0.285 | Prob(JB): | 0.904 |
| Kurtosis: | 3.017 | Cond. No. | 231. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.532 |
| Model: | OLS | Adj. R-squared: | 0.454 |
| Method: | Least Squares | F-statistic: | 6.821 |
| Date: | Sun, 26 Oct 2025 | Prob (F-statistic): | 0.0105 |
| Time: | 03:06:57 | Log-Likelihood: | -69.605 |
| No. Observations: | 15 | AIC: | 145.2 |
| Df Residuals: | 12 | BIC: | 147.3 |
| Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 260.9370 | 132.867 | 1.964 | 0.073 | -28.556 550.430 |
| C(dose)[T.1] | 37.8697 | 16.445 | 2.303 | 0.040 | 2.040 73.699 |
| expression | -39.0297 | 26.713 | -1.461 | 0.170 | -97.233 19.174 |
| Omnibus: | 8.631 | Durbin-Watson: | 1.253 |
| Prob(Omnibus): | 0.013 | Jarque-Bera (JB): | 5.348 |
| Skew: | -1.396 | Prob(JB): | 0.0690 |
| Kurtosis: | 3.875 | Cond. No. | 92.8 |
Model:
AIM ~ C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.449 |
| Model: | OLS | Adj. R-squared: | 0.406 |
| Method: | Least Squares | F-statistic: | 10.58 |
| Date: | Sun, 26 Oct 2025 | Prob (F-statistic): | 0.00629 |
| Time: | 03:06:57 | Log-Likelihood: | -70.833 |
| No. Observations: | 15 | AIC: | 145.7 |
| Df Residuals: | 13 | BIC: | 147.1 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
| C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
| Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
| Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
| Skew: | -0.843 | Prob(JB): | 0.393 |
| Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.325 |
| Model: | OLS | Adj. R-squared: | 0.273 |
| Method: | Least Squares | F-statistic: | 6.265 |
| Date: | Sun, 26 Oct 2025 | Prob (F-statistic): | 0.0264 |
| Time: | 03:06:57 | Log-Likelihood: | -72.350 |
| No. Observations: | 15 | AIC: | 148.7 |
| Df Residuals: | 13 | BIC: | 150.1 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 420.4332 | 130.816 | 3.214 | 0.007 | 137.823 703.043 |
| expression | -68.0310 | 27.180 | -2.503 | 0.026 | -126.749 -9.313 |
| Omnibus: | 18.967 | Durbin-Watson: | 2.143 |
| Prob(Omnibus): | 0.000 | Jarque-Bera (JB): | 18.273 |
| Skew: | -1.881 | Prob(JB): | 0.000108 |
| Kurtosis: | 6.885 | Cond. No. | 78.7 |