AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.046 0.096 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.803
Model: OLS Adj. R-squared: 0.772
Method: Least Squares F-statistic: 25.76
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.60e-07
Time: 05:15:45 Log-Likelihood: -94.442
No. Observations: 23 AIC: 196.9
Df Residuals: 19 BIC: 201.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 46.8766 23.524 1.993 0.061 -2.359 96.113
C(dose)[T.1] -116.6775 52.137 -2.238 0.037 -225.801 -7.554
expression 1.5180 4.774 0.318 0.754 -8.473 11.509
expression:C(dose)[T.1] 32.0491 9.975 3.213 0.005 11.172 52.926
Omnibus: 1.557 Durbin-Watson: 2.315
Prob(Omnibus): 0.459 Jarque-Bera (JB): 1.090
Skew: 0.525 Prob(JB): 0.580
Kurtosis: 2.809 Cond. No. 96.8

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.695
Model: OLS Adj. R-squared: 0.665
Method: Least Squares F-statistic: 22.83
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.86e-06
Time: 05:15:45 Log-Likelihood: -99.432
No. Observations: 23 AIC: 204.9
Df Residuals: 20 BIC: 208.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 11.4224 25.156 0.454 0.655 -41.052 63.897
C(dose)[T.1] 49.3204 8.488 5.811 0.000 31.616 67.025
expression 8.8585 5.075 1.745 0.096 -1.728 19.445
Omnibus: 1.208 Durbin-Watson: 1.672
Prob(Omnibus): 0.547 Jarque-Bera (JB): 1.048
Skew: -0.333 Prob(JB): 0.592
Kurtosis: 2.195 Cond. No. 32.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:15:45 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.181
Model: OLS Adj. R-squared: 0.142
Method: Least Squares F-statistic: 4.649
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0428
Time: 05:15:45 Log-Likelihood: -110.80
No. Observations: 23 AIC: 225.6
Df Residuals: 21 BIC: 227.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -5.3456 39.986 -0.134 0.895 -88.502 77.810
expression 16.8549 7.817 2.156 0.043 0.599 33.111
Omnibus: 1.231 Durbin-Watson: 2.262
Prob(Omnibus): 0.540 Jarque-Bera (JB): 0.908
Skew: -0.470 Prob(JB): 0.635
Kurtosis: 2.746 Cond. No. 32.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.435 0.089 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.593
Model: OLS Adj. R-squared: 0.482
Method: Least Squares F-statistic: 5.341
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0163
Time: 05:15:45 Log-Likelihood: -68.559
No. Observations: 15 AIC: 145.1
Df Residuals: 11 BIC: 148.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 162.8410 70.027 2.325 0.040 8.713 316.969
C(dose)[T.1] 177.2871 173.207 1.024 0.328 -203.939 558.513
expression -14.6891 10.663 -1.378 0.196 -38.159 8.781
expression:C(dose)[T.1] -20.7822 27.267 -0.762 0.462 -80.796 39.232
Omnibus: 3.836 Durbin-Watson: 0.962
Prob(Omnibus): 0.147 Jarque-Bera (JB): 2.416
Skew: -0.982 Prob(JB): 0.299
Kurtosis: 2.898 Cond. No. 189.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.571
Model: OLS Adj. R-squared: 0.500
Method: Least Squares F-statistic: 8.000
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00620
Time: 05:15:45 Log-Likelihood: -68.945
No. Observations: 15 AIC: 143.9
Df Residuals: 12 BIC: 146.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 183.4857 63.439 2.892 0.014 45.265 321.707
C(dose)[T.1] 45.7208 14.005 3.265 0.007 15.208 76.234
expression -17.8674 9.641 -1.853 0.089 -38.874 3.139
Omnibus: 3.320 Durbin-Watson: 1.032
Prob(Omnibus): 0.190 Jarque-Bera (JB): 2.114
Skew: -0.915 Prob(JB): 0.347
Kurtosis: 2.817 Cond. No. 60.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:15:45 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.191
Model: OLS Adj. R-squared: 0.129
Method: Least Squares F-statistic: 3.065
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.104
Time: 05:15:45 Log-Likelihood: -73.712
No. Observations: 15 AIC: 151.4
Df Residuals: 13 BIC: 152.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 234.8116 81.140 2.894 0.013 59.520 410.103
expression -22.0824 12.614 -1.751 0.104 -49.333 5.168
Omnibus: 3.683 Durbin-Watson: 2.099
Prob(Omnibus): 0.159 Jarque-Bera (JB): 1.270
Skew: 0.155 Prob(JB): 0.530
Kurtosis: 1.609 Cond. No. 58.5