AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.609 0.072 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.703
Model: OLS Adj. R-squared: 0.656
Method: Least Squares F-statistic: 14.97
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.05e-05
Time: 04:12:52 Log-Likelihood: -99.154
No. Observations: 23 AIC: 206.3
Df Residuals: 19 BIC: 210.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 0.7840 36.958 0.021 0.983 -76.570 78.138
C(dose)[T.1] 61.6160 54.605 1.128 0.273 -52.674 175.906
expression 8.5062 5.813 1.463 0.160 -3.661 20.674
expression:C(dose)[T.1] -0.4388 9.179 -0.048 0.962 -19.650 18.773
Omnibus: 0.186 Durbin-Watson: 1.740
Prob(Omnibus): 0.911 Jarque-Bera (JB): 0.032
Skew: -0.064 Prob(JB): 0.984
Kurtosis: 2.871 Cond. No. 102.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.703
Model: OLS Adj. R-squared: 0.673
Method: Least Squares F-statistic: 23.64
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.39e-06
Time: 04:12:52 Log-Likelihood: -99.155
No. Observations: 23 AIC: 204.3
Df Residuals: 20 BIC: 207.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 1.8896 28.101 0.067 0.947 -56.729 60.508
C(dose)[T.1] 59.0397 8.612 6.856 0.000 41.075 77.004
expression 8.3302 4.385 1.900 0.072 -0.817 17.477
Omnibus: 0.201 Durbin-Watson: 1.727
Prob(Omnibus): 0.904 Jarque-Bera (JB): 0.032
Skew: -0.070 Prob(JB): 0.984
Kurtosis: 2.880 Cond. No. 43.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:12:52 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.043
Method: Least Squares F-statistic: 0.08569
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.773
Time: 04:12:52 Log-Likelihood: -113.06
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 92.5107 44.294 2.089 0.049 0.396 184.625
expression -2.1490 7.341 -0.293 0.773 -17.416 13.118
Omnibus: 2.609 Durbin-Watson: 2.465
Prob(Omnibus): 0.271 Jarque-Bera (JB): 1.383
Skew: 0.263 Prob(JB): 0.501
Kurtosis: 1.920 Cond. No. 38.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.653 0.435 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.581
Model: OLS Adj. R-squared: 0.467
Method: Least Squares F-statistic: 5.087
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0189
Time: 04:12:52 Log-Likelihood: -68.773
No. Observations: 15 AIC: 145.5
Df Residuals: 11 BIC: 148.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 96.1376 95.094 1.011 0.334 -113.163 305.438
C(dose)[T.1] -194.2761 150.895 -1.287 0.224 -526.394 137.842
expression -4.4478 14.643 -0.304 0.767 -36.677 27.781
expression:C(dose)[T.1] 40.2093 24.338 1.652 0.127 -13.359 93.778
Omnibus: 3.194 Durbin-Watson: 1.010
Prob(Omnibus): 0.202 Jarque-Bera (JB): 1.960
Skew: -0.883 Prob(JB): 0.375
Kurtosis: 2.871 Cond. No. 169.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.477
Model: OLS Adj. R-squared: 0.390
Method: Least Squares F-statistic: 5.477
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0204
Time: 04:12:52 Log-Likelihood: -70.436
No. Observations: 15 AIC: 146.9
Df Residuals: 12 BIC: 149.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 2.1912 81.526 0.027 0.979 -175.438 179.820
C(dose)[T.1] 53.7368 16.326 3.291 0.006 18.165 89.309
expression 10.1070 12.511 0.808 0.435 -17.152 37.366
Omnibus: 2.387 Durbin-Watson: 0.792
Prob(Omnibus): 0.303 Jarque-Bera (JB): 1.748
Skew: -0.794 Prob(JB): 0.417
Kurtosis: 2.475 Cond. No. 68.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:12:52 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.071
Method: Least Squares F-statistic: 0.06831
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.798
Time: 04:12:52 Log-Likelihood: -75.261
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 118.9537 97.281 1.223 0.243 -91.210 329.117
expression -4.0686 15.567 -0.261 0.798 -37.700 29.562
Omnibus: 0.589 Durbin-Watson: 1.548
Prob(Omnibus): 0.745 Jarque-Bera (JB): 0.580
Skew: 0.081 Prob(JB): 0.748
Kurtosis: 2.050 Cond. No. 61.5