AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.037 | 0.321 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.700 |
Model: | OLS | Adj. R-squared: | 0.652 |
Method: | Least Squares | F-statistic: | 14.76 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.35e-05 |
Time: | 06:21:48 | Log-Likelihood: | -99.270 |
No. Observations: | 23 | AIC: | 206.5 |
Df Residuals: | 19 | BIC: | 211.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 160.7584 | 342.505 | 0.469 | 0.644 | -556.114 877.631 |
C(dose)[T.1] | 1235.1436 | 807.071 | 1.530 | 0.142 | -454.076 2924.363 |
expression | -9.3402 | 30.020 | -0.311 | 0.759 | -72.173 53.492 |
expression:C(dose)[T.1] | -100.3421 | 69.077 | -1.453 | 0.163 | -244.922 44.237 |
Omnibus: | 0.514 | Durbin-Watson: | 1.826 |
Prob(Omnibus): | 0.773 | Jarque-Bera (JB): | 0.610 |
Skew: | 0.163 | Prob(JB): | 0.737 |
Kurtosis: | 2.272 | Cond. No. | 2.63e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.666 |
Model: | OLS | Adj. R-squared: | 0.633 |
Method: | Least Squares | F-statistic: | 19.97 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.71e-05 |
Time: | 06:21:48 | Log-Likelihood: | -100.48 |
No. Observations: | 23 | AIC: | 207.0 |
Df Residuals: | 20 | BIC: | 210.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 376.9479 | 316.926 | 1.189 | 0.248 | -284.148 1038.044 |
C(dose)[T.1] | 62.9164 | 12.711 | 4.950 | 0.000 | 36.401 89.431 |
expression | -28.2915 | 27.777 | -1.019 | 0.321 | -86.233 29.650 |
Omnibus: | 1.289 | Durbin-Watson: | 2.006 |
Prob(Omnibus): | 0.525 | Jarque-Bera (JB): | 0.873 |
Skew: | 0.033 | Prob(JB): | 0.646 |
Kurtosis: | 2.048 | Cond. No. | 866. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 06:21:48 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.258 |
Model: | OLS | Adj. R-squared: | 0.222 |
Method: | Least Squares | F-statistic: | 7.289 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0134 |
Time: | 06:21:48 | Log-Likelihood: | -109.68 |
No. Observations: | 23 | AIC: | 223.4 |
Df Residuals: | 21 | BIC: | 225.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -769.9201 | 314.762 | -2.446 | 0.023 | -1424.503 -115.337 |
expression | 73.4371 | 27.201 | 2.700 | 0.013 | 16.870 130.004 |
Omnibus: | 1.046 | Durbin-Watson: | 2.063 |
Prob(Omnibus): | 0.593 | Jarque-Bera (JB): | 0.835 |
Skew: | 0.151 | Prob(JB): | 0.659 |
Kurtosis: | 2.117 | Cond. No. | 590. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.480 | 0.502 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.490 |
Model: | OLS | Adj. R-squared: | 0.351 |
Method: | Least Squares | F-statistic: | 3.525 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0523 |
Time: | 06:21:48 | Log-Likelihood: | -70.248 |
No. Observations: | 15 | AIC: | 148.5 |
Df Residuals: | 11 | BIC: | 151.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 321.1638 | 269.072 | 1.194 | 0.258 | -271.060 913.387 |
C(dose)[T.1] | -215.4513 | 395.349 | -0.545 | 0.597 | -1085.609 654.707 |
expression | -26.5951 | 28.177 | -0.944 | 0.366 | -88.612 35.421 |
expression:C(dose)[T.1] | 27.7756 | 42.123 | 0.659 | 0.523 | -64.936 120.487 |
Omnibus: | 3.474 | Durbin-Watson: | 0.995 |
Prob(Omnibus): | 0.176 | Jarque-Bera (JB): | 2.192 |
Skew: | -0.933 | Prob(JB): | 0.334 |
Kurtosis: | 2.851 | Cond. No. | 618. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.470 |
Model: | OLS | Adj. R-squared: | 0.382 |
Method: | Least Squares | F-statistic: | 5.320 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0222 |
Time: | 06:21:48 | Log-Likelihood: | -70.539 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 202.5894 | 195.389 | 1.037 | 0.320 | -223.126 628.305 |
C(dose)[T.1] | 45.0007 | 16.579 | 2.714 | 0.019 | 8.878 81.124 |
expression | -14.1668 | 20.445 | -0.693 | 0.502 | -58.714 30.380 |
Omnibus: | 4.050 | Durbin-Watson: | 0.799 |
Prob(Omnibus): | 0.132 | Jarque-Bera (JB): | 2.678 |
Skew: | -1.031 | Prob(JB): | 0.262 |
Kurtosis: | 2.817 | Cond. No. | 241. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 06:21:48 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.145 |
Model: | OLS | Adj. R-squared: | 0.079 |
Method: | Least Squares | F-statistic: | 2.197 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.162 |
Time: | 06:21:48 | Log-Likelihood: | -74.129 |
No. Observations: | 15 | AIC: | 152.3 |
Df Residuals: | 13 | BIC: | 153.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 416.7607 | 218.174 | 1.910 | 0.078 | -54.576 888.098 |
expression | -34.4350 | 23.231 | -1.482 | 0.162 | -84.623 15.753 |
Omnibus: | 1.554 | Durbin-Watson: | 1.662 |
Prob(Omnibus): | 0.460 | Jarque-Bera (JB): | 0.849 |
Skew: | 0.010 | Prob(JB): | 0.654 |
Kurtosis: | 1.835 | Cond. No. | 220. |