AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.445 0.512 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.700
Model: OLS Adj. R-squared: 0.653
Method: Least Squares F-statistic: 14.79
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.31e-05
Time: 23:00:00 Log-Likelihood: -99.252
No. Observations: 23 AIC: 206.5
Df Residuals: 19 BIC: 211.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 15.2931 25.328 0.604 0.553 -37.718 68.304
C(dose)[T.1] 121.1415 42.311 2.863 0.010 32.584 209.699
expression 9.3515 5.927 1.578 0.131 -3.055 21.758
expression:C(dose)[T.1] -15.8094 9.525 -1.660 0.113 -35.746 4.127
Omnibus: 0.413 Durbin-Watson: 1.465
Prob(Omnibus): 0.814 Jarque-Bera (JB): 0.472
Skew: -0.272 Prob(JB): 0.790
Kurtosis: 2.556 Cond. No. 58.2

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.13
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.27e-05
Time: 23:00:00 Log-Likelihood: -100.81
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 40.7682 21.012 1.940 0.067 -3.062 84.599
C(dose)[T.1] 52.3292 8.804 5.944 0.000 33.964 70.695
expression 3.2297 4.839 0.667 0.512 -6.865 13.324
Omnibus: 0.225 Durbin-Watson: 1.800
Prob(Omnibus): 0.894 Jarque-Bera (JB): 0.422
Skew: 0.098 Prob(JB): 0.810
Kurtosis: 2.366 Cond. No. 22.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:00:00 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.050
Model: OLS Adj. R-squared: 0.005
Method: Least Squares F-statistic: 1.113
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.303
Time: 23:00:00 Log-Likelihood: -112.51
No. Observations: 23 AIC: 229.0
Df Residuals: 21 BIC: 231.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 44.5288 34.090 1.306 0.206 -26.366 115.423
expression 8.1632 7.738 1.055 0.303 -7.929 24.256
Omnibus: 1.907 Durbin-Watson: 2.364
Prob(Omnibus): 0.385 Jarque-Bera (JB): 1.636
Skew: 0.547 Prob(JB): 0.441
Kurtosis: 2.285 Cond. No. 22.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.140 0.715 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.481
Model: OLS Adj. R-squared: 0.340
Method: Least Squares F-statistic: 3.403
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0570
Time: 23:00:00 Log-Likelihood: -70.376
No. Observations: 15 AIC: 148.8
Df Residuals: 11 BIC: 151.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 40.1340 69.719 0.576 0.576 -113.317 193.585
C(dose)[T.1] 112.4342 86.042 1.307 0.218 -76.944 301.812
expression 4.5000 11.333 0.397 0.699 -20.444 29.444
expression:C(dose)[T.1] -10.3418 13.873 -0.745 0.472 -40.877 20.193
Omnibus: 4.084 Durbin-Watson: 0.733
Prob(Omnibus): 0.130 Jarque-Bera (JB): 2.395
Skew: -0.978 Prob(JB): 0.302
Kurtosis: 3.076 Cond. No. 99.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.364
Method: Least Squares F-statistic: 5.012
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0262
Time: 23:00:01 Log-Likelihood: -70.746
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 81.9941 40.550 2.022 0.066 -6.357 170.346
C(dose)[T.1] 49.4060 15.659 3.155 0.008 15.289 83.523
expression -2.4014 6.414 -0.374 0.715 -16.377 11.575
Omnibus: 3.941 Durbin-Watson: 0.782
Prob(Omnibus): 0.139 Jarque-Bera (JB): 2.533
Skew: -1.004 Prob(JB): 0.282
Kurtosis: 2.867 Cond. No. 33.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:00:01 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.074
Method: Least Squares F-statistic: 0.04056
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.844
Time: 23:00:01 Log-Likelihood: -75.277
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 103.9210 51.918 2.002 0.067 -8.242 216.084
expression -1.6777 8.331 -0.201 0.844 -19.675 16.320
Omnibus: 0.473 Durbin-Watson: 1.660
Prob(Omnibus): 0.789 Jarque-Bera (JB): 0.530
Skew: -0.034 Prob(JB): 0.767
Kurtosis: 2.082 Cond. No. 32.7