AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.523 0.029 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.795
Model: OLS Adj. R-squared: 0.762
Method: Least Squares F-statistic: 24.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.62e-07
Time: 04:46:28 Log-Likelihood: -94.903
No. Observations: 23 AIC: 197.8
Df Residuals: 19 BIC: 202.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 46.7840 25.367 1.844 0.081 -6.310 99.878
C(dose)[T.1] -47.8061 39.366 -1.214 0.239 -130.200 34.588
expression 1.5253 5.119 0.298 0.769 -9.189 12.239
expression:C(dose)[T.1] 19.5649 7.711 2.537 0.020 3.425 35.705
Omnibus: 1.048 Durbin-Watson: 2.220
Prob(Omnibus): 0.592 Jarque-Bera (JB): 0.495
Skew: 0.359 Prob(JB): 0.781
Kurtosis: 3.013 Cond. No. 76.3

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.725
Model: OLS Adj. R-squared: 0.697
Method: Least Squares F-statistic: 26.36
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.47e-06
Time: 04:46:29 Log-Likelihood: -98.259
No. Observations: 23 AIC: 202.5
Df Residuals: 20 BIC: 205.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 4.8203 21.691 0.222 0.826 -40.426 50.067
C(dose)[T.1] 50.4937 7.857 6.427 0.000 34.104 66.883
expression 10.1464 4.318 2.350 0.029 1.140 19.153
Omnibus: 0.633 Durbin-Watson: 1.719
Prob(Omnibus): 0.729 Jarque-Bera (JB): 0.707
Skew: -0.292 Prob(JB): 0.702
Kurtosis: 2.370 Cond. No. 29.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:46:29 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.157
Model: OLS Adj. R-squared: 0.117
Method: Least Squares F-statistic: 3.914
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0612
Time: 04:46:29 Log-Likelihood: -111.14
No. Observations: 23 AIC: 226.3
Df Residuals: 21 BIC: 228.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 7.5977 37.052 0.205 0.840 -69.457 84.652
expression 14.4194 7.289 1.978 0.061 -0.738 29.577
Omnibus: 0.774 Durbin-Watson: 2.504
Prob(Omnibus): 0.679 Jarque-Bera (JB): 0.800
Skew: -0.351 Prob(JB): 0.670
Kurtosis: 2.414 Cond. No. 29.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.601 0.133 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.547
Model: OLS Adj. R-squared: 0.423
Method: Least Squares F-statistic: 4.427
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0284
Time: 04:46:29 Log-Likelihood: -69.362
No. Observations: 15 AIC: 146.7
Df Residuals: 11 BIC: 149.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 162.5517 66.237 2.454 0.032 16.764 308.339
C(dose)[T.1] 46.4310 191.615 0.242 0.813 -375.312 468.174
expression -14.8764 10.218 -1.456 0.173 -37.366 7.614
expression:C(dose)[T.1] 0.1819 30.334 0.006 0.995 -66.583 66.947
Omnibus: 4.375 Durbin-Watson: 1.022
Prob(Omnibus): 0.112 Jarque-Bera (JB): 2.463
Skew: -0.987 Prob(JB): 0.292
Kurtosis: 3.207 Cond. No. 196.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.547
Model: OLS Adj. R-squared: 0.471
Method: Least Squares F-statistic: 7.244
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00865
Time: 04:46:29 Log-Likelihood: -69.362
No. Observations: 15 AIC: 144.7
Df Residuals: 12 BIC: 146.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 162.4198 59.814 2.715 0.019 32.095 292.744
C(dose)[T.1] 47.5765 14.304 3.326 0.006 16.410 78.743
expression -14.8557 9.211 -1.613 0.133 -34.926 5.214
Omnibus: 4.389 Durbin-Watson: 1.020
Prob(Omnibus): 0.111 Jarque-Bera (JB): 2.471
Skew: -0.989 Prob(JB): 0.291
Kurtosis: 3.210 Cond. No. 55.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:46:29 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.129
Model: OLS Adj. R-squared: 0.062
Method: Least Squares F-statistic: 1.931
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.188
Time: 04:46:29 Log-Likelihood: -74.261
No. Observations: 15 AIC: 152.5
Df Residuals: 13 BIC: 153.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 201.4252 78.122 2.578 0.023 32.653 370.198
expression -17.0071 12.239 -1.390 0.188 -43.447 9.433
Omnibus: 4.414 Durbin-Watson: 2.015
Prob(Omnibus): 0.110 Jarque-Bera (JB): 1.490
Skew: 0.293 Prob(JB): 0.475
Kurtosis: 1.572 Cond. No. 53.9