AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.965 | 0.060 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.749 |
Model: | OLS | Adj. R-squared: | 0.709 |
Method: | Least Squares | F-statistic: | 18.89 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.32e-06 |
Time: | 05:27:32 | Log-Likelihood: | -97.213 |
No. Observations: | 23 | AIC: | 202.4 |
Df Residuals: | 19 | BIC: | 207.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 21.5268 | 39.331 | 0.547 | 0.591 | -60.794 103.848 |
C(dose)[T.1] | -84.0120 | 76.135 | -1.103 | 0.284 | -243.363 75.339 |
expression | 4.2813 | 5.106 | 0.838 | 0.412 | -6.406 14.968 |
expression:C(dose)[T.1] | 17.1653 | 9.654 | 1.778 | 0.091 | -3.041 37.371 |
Omnibus: | 1.380 | Durbin-Watson: | 1.335 |
Prob(Omnibus): | 0.502 | Jarque-Bera (JB): | 1.013 |
Skew: | 0.234 | Prob(JB): | 0.603 |
Kurtosis: | 2.085 | Cond. No. | 189. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.707 |
Model: | OLS | Adj. R-squared: | 0.678 |
Method: | Least Squares | F-statistic: | 24.14 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.64e-06 |
Time: | 05:27:32 | Log-Likelihood: | -98.983 |
No. Observations: | 23 | AIC: | 204.0 |
Df Residuals: | 20 | BIC: | 207.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -15.1282 | 35.259 | -0.429 | 0.672 | -88.677 58.421 |
C(dose)[T.1] | 50.6617 | 8.123 | 6.236 | 0.000 | 33.716 67.607 |
expression | 9.0831 | 4.562 | 1.991 | 0.060 | -0.432 18.598 |
Omnibus: | 5.876 | Durbin-Watson: | 1.483 |
Prob(Omnibus): | 0.053 | Jarque-Bera (JB): | 1.789 |
Skew: | 0.147 | Prob(JB): | 0.409 |
Kurtosis: | 1.666 | Cond. No. | 70.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:27:32 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.138 |
Model: | OLS | Adj. R-squared: | 0.096 |
Method: | Least Squares | F-statistic: | 3.350 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0815 |
Time: | 05:27:32 | Log-Likelihood: | -111.40 |
No. Observations: | 23 | AIC: | 226.8 |
Df Residuals: | 21 | BIC: | 229.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -27.4788 | 58.953 | -0.466 | 0.646 | -150.079 95.121 |
expression | 13.7883 | 7.534 | 1.830 | 0.081 | -1.879 29.456 |
Omnibus: | 3.291 | Durbin-Watson: | 2.528 |
Prob(Omnibus): | 0.193 | Jarque-Bera (JB): | 1.335 |
Skew: | 0.013 | Prob(JB): | 0.513 |
Kurtosis: | 1.820 | Cond. No. | 69.9 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.168 | 0.167 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.605 |
Model: | OLS | Adj. R-squared: | 0.497 |
Method: | Least Squares | F-statistic: | 5.616 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0139 |
Time: | 05:27:32 | Log-Likelihood: | -68.333 |
No. Observations: | 15 | AIC: | 144.7 |
Df Residuals: | 11 | BIC: | 147.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 59.9504 | 54.457 | 1.101 | 0.294 | -59.908 179.809 |
C(dose)[T.1] | -92.9402 | 90.686 | -1.025 | 0.327 | -292.538 106.657 |
expression | 1.3818 | 9.885 | 0.140 | 0.891 | -20.376 23.139 |
expression:C(dose)[T.1] | 20.3433 | 14.377 | 1.415 | 0.185 | -11.299 51.986 |
Omnibus: | 2.410 | Durbin-Watson: | 0.643 |
Prob(Omnibus): | 0.300 | Jarque-Bera (JB): | 1.676 |
Skew: | -0.793 | Prob(JB): | 0.433 |
Kurtosis: | 2.588 | Cond. No. | 111. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.533 |
Model: | OLS | Adj. R-squared: | 0.455 |
Method: | Least Squares | F-statistic: | 6.851 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0104 |
Time: | 05:27:32 | Log-Likelihood: | -69.588 |
No. Observations: | 15 | AIC: | 145.2 |
Df Residuals: | 12 | BIC: | 147.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 7.8960 | 41.797 | 0.189 | 0.853 | -83.171 98.963 |
C(dose)[T.1] | 32.9751 | 18.200 | 1.812 | 0.095 | -6.678 72.629 |
expression | 11.0000 | 7.471 | 1.472 | 0.167 | -5.279 27.279 |
Omnibus: | 4.140 | Durbin-Watson: | 0.909 |
Prob(Omnibus): | 0.126 | Jarque-Bera (JB): | 1.950 |
Skew: | -0.588 | Prob(JB): | 0.377 |
Kurtosis: | 1.682 | Cond. No. | 38.5 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:27:32 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.405 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 8.863 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0107 |
Time: | 05:27:32 | Log-Likelihood: | -71.401 |
No. Observations: | 15 | AIC: | 146.8 |
Df Residuals: | 13 | BIC: | 148.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -25.3157 | 40.727 | -0.622 | 0.545 | -113.302 62.671 |
expression | 19.1951 | 6.448 | 2.977 | 0.011 | 5.266 33.125 |
Omnibus: | 1.333 | Durbin-Watson: | 1.289 |
Prob(Omnibus): | 0.513 | Jarque-Bera (JB): | 1.107 |
Skew: | -0.522 | Prob(JB): | 0.575 |
Kurtosis: | 2.176 | Cond. No. | 33.6 |