AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.229 0.087 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.733
Model: OLS Adj. R-squared: 0.691
Method: Least Squares F-statistic: 17.40
Date: Tue, 03 Dec 2024 Prob (F-statistic): 1.11e-05
Time: 11:38:50 Log-Likelihood: -97.910
No. Observations: 23 AIC: 203.8
Df Residuals: 19 BIC: 208.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 49.8905 32.378 1.541 0.140 -17.878 117.659
C(dose)[T.1] -12.4540 43.626 -0.285 0.778 -103.765 78.857
expression 1.1615 8.587 0.135 0.894 -16.810 19.133
expression:C(dose)[T.1] 18.8100 11.853 1.587 0.129 -5.999 43.619
Omnibus: 0.791 Durbin-Watson: 2.274
Prob(Omnibus): 0.673 Jarque-Bera (JB): 0.820
Skew: 0.339 Prob(JB): 0.664
Kurtosis: 2.372 Cond. No. 57.6

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.698
Model: OLS Adj. R-squared: 0.668
Method: Least Squares F-statistic: 23.09
Date: Tue, 03 Dec 2024 Prob (F-statistic): 6.34e-06
Time: 11:38:50 Log-Likelihood: -99.342
No. Observations: 23 AIC: 204.7
Df Residuals: 20 BIC: 208.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 13.1945 23.508 0.561 0.581 -35.843 62.232
C(dose)[T.1] 55.6218 8.236 6.753 0.000 38.441 72.802
expression 11.0326 6.140 1.797 0.087 -1.775 23.840
Omnibus: 0.987 Durbin-Watson: 1.712
Prob(Omnibus): 0.610 Jarque-Bera (JB): 0.805
Skew: -0.134 Prob(JB): 0.669
Kurtosis: 2.124 Cond. No. 23.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:38:50 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.009
Model: OLS Adj. R-squared: -0.038
Method: Least Squares F-statistic: 0.1866
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.670
Time: 11:38:50 Log-Likelihood: -113.00
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 62.9573 39.458 1.596 0.126 -19.099 145.014
expression 4.6318 10.722 0.432 0.670 -17.666 26.930
Omnibus: 2.876 Durbin-Watson: 2.523
Prob(Omnibus): 0.237 Jarque-Bera (JB): 1.356
Skew: 0.193 Prob(JB): 0.508
Kurtosis: 1.875 Cond. No. 21.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.826 0.202 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.529
Model: OLS Adj. R-squared: 0.401
Method: Least Squares F-statistic: 4.120
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0347
Time: 11:38:50 Log-Likelihood: -69.652
No. Observations: 15 AIC: 147.3
Df Residuals: 11 BIC: 150.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 153.8845 64.506 2.386 0.036 11.907 295.862
C(dose)[T.1] -15.9135 148.916 -0.107 0.917 -343.675 311.848
expression -18.6468 13.705 -1.361 0.201 -48.812 11.518
expression:C(dose)[T.1] 13.8565 33.010 0.420 0.683 -58.798 86.511
Omnibus: 3.191 Durbin-Watson: 1.038
Prob(Omnibus): 0.203 Jarque-Bera (JB): 1.870
Skew: -0.865 Prob(JB): 0.393
Kurtosis: 2.948 Cond. No. 111.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.522
Model: OLS Adj. R-squared: 0.442
Method: Least Squares F-statistic: 6.541
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0120
Time: 11:38:50 Log-Likelihood: -69.771
No. Observations: 15 AIC: 145.5
Df Residuals: 12 BIC: 147.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 142.8099 56.808 2.514 0.027 19.036 266.584
C(dose)[T.1] 46.2628 14.824 3.121 0.009 13.965 78.560
expression -16.2582 12.033 -1.351 0.202 -42.475 9.959
Omnibus: 3.910 Durbin-Watson: 0.937
Prob(Omnibus): 0.142 Jarque-Bera (JB): 2.277
Skew: -0.954 Prob(JB): 0.320
Kurtosis: 3.062 Cond. No. 37.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:38:51 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.133
Model: OLS Adj. R-squared: 0.067
Method: Least Squares F-statistic: 1.998
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.181
Time: 11:38:51 Log-Likelihood: -74.228
No. Observations: 15 AIC: 152.5
Df Residuals: 13 BIC: 153.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 192.4561 70.524 2.729 0.017 40.099 344.813
expression -21.7585 15.393 -1.414 0.181 -55.012 11.495
Omnibus: 3.811 Durbin-Watson: 1.914
Prob(Omnibus): 0.149 Jarque-Bera (JB): 1.380
Skew: 0.269 Prob(JB): 0.501
Kurtosis: 1.615 Cond. No. 35.8