AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.363 0.554 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.761
Model: OLS Adj. R-squared: 0.723
Method: Least Squares F-statistic: 20.16
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.99e-06
Time: 22:59:59 Log-Likelihood: -96.649
No. Observations: 23 AIC: 201.3
Df Residuals: 19 BIC: 205.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -104.1832 158.491 -0.657 0.519 -435.909 227.543
C(dose)[T.1] 893.4238 289.927 3.082 0.006 286.599 1500.249
expression 16.5796 16.581 1.000 0.330 -18.126 51.285
expression:C(dose)[T.1] -87.5582 30.226 -2.897 0.009 -150.821 -24.295
Omnibus: 0.020 Durbin-Watson: 1.782
Prob(Omnibus): 0.990 Jarque-Bera (JB): 0.107
Skew: 0.034 Prob(JB): 0.948
Kurtosis: 2.673 Cond. No. 905.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.01
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.37e-05
Time: 22:59:59 Log-Likelihood: -100.86
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 147.5522 155.114 0.951 0.353 -176.011 471.115
C(dose)[T.1] 53.8341 8.730 6.166 0.000 35.623 72.046
expression -9.7708 16.224 -0.602 0.554 -43.614 24.073
Omnibus: 0.320 Durbin-Watson: 1.951
Prob(Omnibus): 0.852 Jarque-Bera (JB): 0.486
Skew: 0.172 Prob(JB): 0.784
Kurtosis: 2.376 Cond. No. 346.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:59:59 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 0.0001372
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.991
Time: 22:59:59 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 82.7297 257.241 0.322 0.751 -452.232 617.692
expression -0.3145 26.848 -0.012 0.991 -56.147 55.518
Omnibus: 3.328 Durbin-Watson: 2.490
Prob(Omnibus): 0.189 Jarque-Bera (JB): 1.570
Skew: 0.287 Prob(JB): 0.456
Kurtosis: 1.855 Cond. No. 345.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.058 0.813 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.460
Model: OLS Adj. R-squared: 0.312
Method: Least Squares F-statistic: 3.120
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0702
Time: 22:59:59 Log-Likelihood: -70.683
No. Observations: 15 AIC: 149.4
Df Residuals: 11 BIC: 152.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -42.1895 627.827 -0.067 0.948 -1424.027 1339.648
C(dose)[T.1] 374.2042 797.529 0.469 0.648 -1381.146 2129.555
expression 11.2881 64.640 0.175 0.865 -130.984 153.560
expression:C(dose)[T.1] -33.9601 82.807 -0.410 0.690 -216.217 148.297
Omnibus: 1.690 Durbin-Watson: 0.717
Prob(Omnibus): 0.430 Jarque-Bera (JB): 1.342
Skew: -0.644 Prob(JB): 0.511
Kurtosis: 2.302 Cond. No. 1.33e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 4.938
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0273
Time: 23:00:00 Log-Likelihood: -70.797
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 158.7654 378.663 0.419 0.682 -666.271 983.802
C(dose)[T.1] 47.2154 17.718 2.665 0.021 8.611 85.820
expression -9.4056 38.976 -0.241 0.813 -94.326 75.515
Omnibus: 2.437 Durbin-Watson: 0.865
Prob(Omnibus): 0.296 Jarque-Bera (JB): 1.743
Skew: -0.801 Prob(JB): 0.418
Kurtosis: 2.531 Cond. No. 470.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:00:00 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.127
Model: OLS Adj. R-squared: 0.060
Method: Least Squares F-statistic: 1.888
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.193
Time: 23:00:00 Log-Likelihood: -74.283
No. Observations: 15 AIC: 152.6
Df Residuals: 13 BIC: 154.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 645.8536 401.981 1.607 0.132 -222.575 1514.282
expression -57.5280 41.868 -1.374 0.193 -147.977 32.921
Omnibus: 0.030 Durbin-Watson: 1.391
Prob(Omnibus): 0.985 Jarque-Bera (JB): 0.108
Skew: 0.012 Prob(JB): 0.948
Kurtosis: 2.586 Cond. No. 411.