AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.363 | 0.554 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.761 |
Model: | OLS | Adj. R-squared: | 0.723 |
Method: | Least Squares | F-statistic: | 20.16 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.99e-06 |
Time: | 22:59:59 | Log-Likelihood: | -96.649 |
No. Observations: | 23 | AIC: | 201.3 |
Df Residuals: | 19 | BIC: | 205.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -104.1832 | 158.491 | -0.657 | 0.519 | -435.909 227.543 |
C(dose)[T.1] | 893.4238 | 289.927 | 3.082 | 0.006 | 286.599 1500.249 |
expression | 16.5796 | 16.581 | 1.000 | 0.330 | -18.126 51.285 |
expression:C(dose)[T.1] | -87.5582 | 30.226 | -2.897 | 0.009 | -150.821 -24.295 |
Omnibus: | 0.020 | Durbin-Watson: | 1.782 |
Prob(Omnibus): | 0.990 | Jarque-Bera (JB): | 0.107 |
Skew: | 0.034 | Prob(JB): | 0.948 |
Kurtosis: | 2.673 | Cond. No. | 905. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.621 |
Method: | Least Squares | F-statistic: | 19.01 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.37e-05 |
Time: | 22:59:59 | Log-Likelihood: | -100.86 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 147.5522 | 155.114 | 0.951 | 0.353 | -176.011 471.115 |
C(dose)[T.1] | 53.8341 | 8.730 | 6.166 | 0.000 | 35.623 72.046 |
expression | -9.7708 | 16.224 | -0.602 | 0.554 | -43.614 24.073 |
Omnibus: | 0.320 | Durbin-Watson: | 1.951 |
Prob(Omnibus): | 0.852 | Jarque-Bera (JB): | 0.486 |
Skew: | 0.172 | Prob(JB): | 0.784 |
Kurtosis: | 2.376 | Cond. No. | 346. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:59:59 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.048 |
Method: | Least Squares | F-statistic: | 0.0001372 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.991 |
Time: | 22:59:59 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 82.7297 | 257.241 | 0.322 | 0.751 | -452.232 617.692 |
expression | -0.3145 | 26.848 | -0.012 | 0.991 | -56.147 55.518 |
Omnibus: | 3.328 | Durbin-Watson: | 2.490 |
Prob(Omnibus): | 0.189 | Jarque-Bera (JB): | 1.570 |
Skew: | 0.287 | Prob(JB): | 0.456 |
Kurtosis: | 1.855 | Cond. No. | 345. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.058 | 0.813 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.460 |
Model: | OLS | Adj. R-squared: | 0.312 |
Method: | Least Squares | F-statistic: | 3.120 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0702 |
Time: | 22:59:59 | Log-Likelihood: | -70.683 |
No. Observations: | 15 | AIC: | 149.4 |
Df Residuals: | 11 | BIC: | 152.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -42.1895 | 627.827 | -0.067 | 0.948 | -1424.027 1339.648 |
C(dose)[T.1] | 374.2042 | 797.529 | 0.469 | 0.648 | -1381.146 2129.555 |
expression | 11.2881 | 64.640 | 0.175 | 0.865 | -130.984 153.560 |
expression:C(dose)[T.1] | -33.9601 | 82.807 | -0.410 | 0.690 | -216.217 148.297 |
Omnibus: | 1.690 | Durbin-Watson: | 0.717 |
Prob(Omnibus): | 0.430 | Jarque-Bera (JB): | 1.342 |
Skew: | -0.644 | Prob(JB): | 0.511 |
Kurtosis: | 2.302 | Cond. No. | 1.33e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 4.938 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0273 |
Time: | 23:00:00 | Log-Likelihood: | -70.797 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 158.7654 | 378.663 | 0.419 | 0.682 | -666.271 983.802 |
C(dose)[T.1] | 47.2154 | 17.718 | 2.665 | 0.021 | 8.611 85.820 |
expression | -9.4056 | 38.976 | -0.241 | 0.813 | -94.326 75.515 |
Omnibus: | 2.437 | Durbin-Watson: | 0.865 |
Prob(Omnibus): | 0.296 | Jarque-Bera (JB): | 1.743 |
Skew: | -0.801 | Prob(JB): | 0.418 |
Kurtosis: | 2.531 | Cond. No. | 470. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 23:00:00 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.127 |
Model: | OLS | Adj. R-squared: | 0.060 |
Method: | Least Squares | F-statistic: | 1.888 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.193 |
Time: | 23:00:00 | Log-Likelihood: | -74.283 |
No. Observations: | 15 | AIC: | 152.6 |
Df Residuals: | 13 | BIC: | 154.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 645.8536 | 401.981 | 1.607 | 0.132 | -222.575 1514.282 |
expression | -57.5280 | 41.868 | -1.374 | 0.193 | -147.977 32.921 |
Omnibus: | 0.030 | Durbin-Watson: | 1.391 |
Prob(Omnibus): | 0.985 | Jarque-Bera (JB): | 0.108 |
Skew: | 0.012 | Prob(JB): | 0.948 |
Kurtosis: | 2.586 | Cond. No. | 411. |