AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.527 0.476 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.675
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 13.13
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.06e-05
Time: 03:56:48 Log-Likelihood: -100.19
No. Observations: 23 AIC: 208.4
Df Residuals: 19 BIC: 212.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 80.8020 227.433 0.355 0.726 -395.220 556.824
C(dose)[T.1] 489.8877 443.192 1.105 0.283 -437.724 1417.500
expression -2.7041 23.118 -0.117 0.908 -51.091 45.683
expression:C(dose)[T.1] -44.3675 45.041 -0.985 0.337 -138.639 49.904
Omnibus: 1.444 Durbin-Watson: 1.802
Prob(Omnibus): 0.486 Jarque-Bera (JB): 0.956
Skew: 0.134 Prob(JB): 0.620
Kurtosis: 2.038 Cond. No. 1.20e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.25
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.18e-05
Time: 03:56:48 Log-Likelihood: -100.76
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 195.7513 195.068 1.004 0.328 -211.154 602.657
C(dose)[T.1] 53.4044 8.657 6.169 0.000 35.346 71.463
expression -14.3925 19.826 -0.726 0.476 -55.749 26.963
Omnibus: 1.082 Durbin-Watson: 1.871
Prob(Omnibus): 0.582 Jarque-Bera (JB): 0.805
Skew: 0.017 Prob(JB): 0.669
Kurtosis: 2.084 Cond. No. 449.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:56:48 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.007
Model: OLS Adj. R-squared: -0.040
Method: Least Squares F-statistic: 0.1575
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.695
Time: 03:56:48 Log-Likelihood: -113.02
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 208.4165 324.321 0.643 0.527 -466.045 882.878
expression -13.0836 32.962 -0.397 0.695 -81.633 55.465
Omnibus: 2.907 Durbin-Watson: 2.519
Prob(Omnibus): 0.234 Jarque-Bera (JB): 1.424
Skew: 0.245 Prob(JB): 0.491
Kurtosis: 1.884 Cond. No. 448.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.825 0.382 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.486
Model: OLS Adj. R-squared: 0.346
Method: Least Squares F-statistic: 3.472
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0543
Time: 03:56:48 Log-Likelihood: -70.303
No. Observations: 15 AIC: 148.6
Df Residuals: 11 BIC: 151.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -296.4770 658.283 -0.450 0.661 -1745.348 1152.394
C(dose)[T.1] -198.5081 1087.030 -0.183 0.858 -2591.045 2194.029
expression 38.1306 68.965 0.553 0.591 -113.661 189.922
expression:C(dose)[T.1] 24.0256 111.730 0.215 0.834 -221.889 269.941
Omnibus: 3.103 Durbin-Watson: 0.969
Prob(Omnibus): 0.212 Jarque-Bera (JB): 1.629
Skew: -0.522 Prob(JB): 0.443
Kurtosis: 1.768 Cond. No. 1.70e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.484
Model: OLS Adj. R-squared: 0.398
Method: Least Squares F-statistic: 5.633
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0188
Time: 03:56:48 Log-Likelihood: -70.334
No. Observations: 15 AIC: 146.7
Df Residuals: 12 BIC: 148.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -383.8373 496.954 -0.772 0.455 -1466.606 698.932
C(dose)[T.1] 35.1896 21.671 1.624 0.130 -12.026 82.406
expression 47.2844 52.059 0.908 0.382 -66.142 160.710
Omnibus: 2.807 Durbin-Watson: 0.966
Prob(Omnibus): 0.246 Jarque-Bera (JB): 1.580
Skew: -0.529 Prob(JB): 0.454
Kurtosis: 1.813 Cond. No. 643.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:56:48 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.371
Model: OLS Adj. R-squared: 0.323
Method: Least Squares F-statistic: 7.664
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0160
Time: 03:56:48 Log-Likelihood: -71.824
No. Observations: 15 AIC: 147.6
Df Residuals: 13 BIC: 149.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -948.6881 376.598 -2.519 0.026 -1762.278 -135.098
expression 107.4411 38.809 2.768 0.016 23.599 191.283
Omnibus: 6.670 Durbin-Watson: 1.662
Prob(Omnibus): 0.036 Jarque-Bera (JB): 1.567
Skew: -0.052 Prob(JB): 0.457
Kurtosis: 1.420 Cond. No. 458.