AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.893 | 0.356 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.708 |
Model: | OLS | Adj. R-squared: | 0.662 |
Method: | Least Squares | F-statistic: | 15.33 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.61e-05 |
Time: | 04:31:35 | Log-Likelihood: | -98.961 |
No. Observations: | 23 | AIC: | 205.9 |
Df Residuals: | 19 | BIC: | 210.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 290.0690 | 132.075 | 2.196 | 0.041 | 13.632 566.506 |
C(dose)[T.1] | -335.2425 | 235.351 | -1.424 | 0.171 | -827.838 157.353 |
expression | -30.3760 | 16.994 | -1.787 | 0.090 | -65.945 5.193 |
expression:C(dose)[T.1] | 48.7810 | 28.973 | 1.684 | 0.109 | -11.859 109.421 |
Omnibus: | 0.091 | Durbin-Watson: | 1.700 |
Prob(Omnibus): | 0.955 | Jarque-Bera (JB): | 0.317 |
Skew: | -0.015 | Prob(JB): | 0.853 |
Kurtosis: | 2.426 | Cond. No. | 570. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.630 |
Method: | Least Squares | F-statistic: | 19.77 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.83e-05 |
Time: | 04:31:35 | Log-Likelihood: | -100.56 |
No. Observations: | 23 | AIC: | 207.1 |
Df Residuals: | 20 | BIC: | 210.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 159.7552 | 111.822 | 1.429 | 0.169 | -73.502 393.013 |
C(dose)[T.1] | 60.5825 | 11.506 | 5.265 | 0.000 | 36.582 84.583 |
expression | -13.5932 | 14.381 | -0.945 | 0.356 | -43.592 16.405 |
Omnibus: | 0.096 | Durbin-Watson: | 1.765 |
Prob(Omnibus): | 0.953 | Jarque-Bera (JB): | 0.240 |
Skew: | 0.130 | Prob(JB): | 0.887 |
Kurtosis: | 2.573 | Cond. No. | 214. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:31:35 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.198 |
Model: | OLS | Adj. R-squared: | 0.160 |
Method: | Least Squares | F-statistic: | 5.197 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0332 |
Time: | 04:31:35 | Log-Likelihood: | -110.56 |
No. Observations: | 23 | AIC: | 225.1 |
Df Residuals: | 21 | BIC: | 227.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -215.8524 | 129.819 | -1.663 | 0.111 | -485.827 54.122 |
expression | 36.8558 | 16.168 | 2.280 | 0.033 | 3.233 70.478 |
Omnibus: | 0.570 | Durbin-Watson: | 2.420 |
Prob(Omnibus): | 0.752 | Jarque-Bera (JB): | 0.663 |
Skew: | -0.260 | Prob(JB): | 0.718 |
Kurtosis: | 2.351 | Cond. No. | 164. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.192 | 0.669 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.467 |
Model: | OLS | Adj. R-squared: | 0.321 |
Method: | Least Squares | F-statistic: | 3.207 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0658 |
Time: | 04:31:35 | Log-Likelihood: | -70.587 |
No. Observations: | 15 | AIC: | 149.2 |
Df Residuals: | 11 | BIC: | 152.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -156.1724 | 403.455 | -0.387 | 0.706 | -1044.171 731.826 |
C(dose)[T.1] | 238.3132 | 427.820 | 0.557 | 0.589 | -703.313 1179.939 |
expression | 28.8605 | 52.052 | 0.554 | 0.590 | -85.706 143.427 |
expression:C(dose)[T.1] | -24.0837 | 55.639 | -0.433 | 0.673 | -146.545 98.378 |
Omnibus: | 2.352 | Durbin-Watson: | 0.923 |
Prob(Omnibus): | 0.309 | Jarque-Bera (JB): | 1.551 |
Skew: | -0.771 | Prob(JB): | 0.460 |
Kurtosis: | 2.679 | Cond. No. | 626. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.457 |
Model: | OLS | Adj. R-squared: | 0.367 |
Method: | Least Squares | F-statistic: | 5.059 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0255 |
Time: | 04:31:35 | Log-Likelihood: | -70.714 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 7.1352 | 138.024 | 0.052 | 0.960 | -293.593 307.863 |
C(dose)[T.1] | 53.3101 | 18.218 | 2.926 | 0.013 | 13.616 93.005 |
expression | 7.7822 | 17.754 | 0.438 | 0.669 | -30.901 46.465 |
Omnibus: | 2.042 | Durbin-Watson: | 0.878 |
Prob(Omnibus): | 0.360 | Jarque-Bera (JB): | 1.359 |
Skew: | -0.716 | Prob(JB): | 0.507 |
Kurtosis: | 2.651 | Cond. No. | 136. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:31:35 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.070 |
Model: | OLS | Adj. R-squared: | -0.001 |
Method: | Least Squares | F-statistic: | 0.9835 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.339 |
Time: | 04:31:35 | Log-Likelihood: | -74.753 |
No. Observations: | 15 | AIC: | 153.5 |
Df Residuals: | 13 | BIC: | 154.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 235.3646 | 143.215 | 1.643 | 0.124 | -74.033 544.762 |
expression | -18.9798 | 19.138 | -0.992 | 0.339 | -60.325 22.366 |
Omnibus: | 0.519 | Durbin-Watson: | 1.519 |
Prob(Omnibus): | 0.771 | Jarque-Bera (JB): | 0.547 |
Skew: | -0.011 | Prob(JB): | 0.761 |
Kurtosis: | 2.064 | Cond. No. | 111. |