AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.014 | 0.908 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.659 |
Model: | OLS | Adj. R-squared: | 0.606 |
Method: | Least Squares | F-statistic: | 12.26 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000108 |
Time: | 04:43:22 | Log-Likelihood: | -100.72 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 214.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -94.4902 | 221.438 | -0.427 | 0.674 | -557.966 368.986 |
C(dose)[T.1] | 261.1352 | 276.422 | 0.945 | 0.357 | -317.423 839.694 |
expression | 16.0604 | 23.908 | 0.672 | 0.510 | -33.979 66.100 |
expression:C(dose)[T.1] | -22.4458 | 29.844 | -0.752 | 0.461 | -84.910 40.018 |
Omnibus: | 0.389 | Durbin-Watson: | 2.089 |
Prob(Omnibus): | 0.823 | Jarque-Bera (JB): | 0.522 |
Skew: | 0.052 | Prob(JB): | 0.770 |
Kurtosis: | 2.269 | Cond. No. | 808. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.51 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.81e-05 |
Time: | 04:43:22 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 38.8767 | 131.183 | 0.296 | 0.770 | -234.767 312.521 |
C(dose)[T.1] | 53.3426 | 8.767 | 6.084 | 0.000 | 35.055 71.630 |
expression | 1.6559 | 14.154 | 0.117 | 0.908 | -27.868 31.180 |
Omnibus: | 0.259 | Durbin-Watson: | 1.926 |
Prob(Omnibus): | 0.878 | Jarque-Bera (JB): | 0.446 |
Skew: | 0.043 | Prob(JB): | 0.800 |
Kurtosis: | 2.323 | Cond. No. | 281. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:43:22 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.002642 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.959 |
Time: | 04:43:22 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 68.6212 | 216.016 | 0.318 | 0.754 | -380.608 517.850 |
expression | 1.1987 | 23.322 | 0.051 | 0.959 | -47.302 49.699 |
Omnibus: | 3.326 | Durbin-Watson: | 2.495 |
Prob(Omnibus): | 0.190 | Jarque-Bera (JB): | 1.578 |
Skew: | 0.292 | Prob(JB): | 0.454 |
Kurtosis: | 1.857 | Cond. No. | 280. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.965 | 0.345 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.557 |
Method: | Least Squares | F-statistic: | 6.862 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00716 |
Time: | 04:43:22 | Log-Likelihood: | -67.389 |
No. Observations: | 15 | AIC: | 142.8 |
Df Residuals: | 11 | BIC: | 145.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 52.1511 | 202.808 | 0.257 | 0.802 | -394.226 498.528 |
C(dose)[T.1] | 991.1593 | 418.681 | 2.367 | 0.037 | 69.648 1912.671 |
expression | 1.6500 | 21.879 | 0.075 | 0.941 | -46.506 49.806 |
expression:C(dose)[T.1] | -103.9243 | 45.956 | -2.261 | 0.045 | -205.072 -2.777 |
Omnibus: | 0.267 | Durbin-Watson: | 1.128 |
Prob(Omnibus): | 0.875 | Jarque-Bera (JB): | 0.221 |
Skew: | -0.230 | Prob(JB): | 0.895 |
Kurtosis: | 2.623 | Cond. No. | 710. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.490 |
Model: | OLS | Adj. R-squared: | 0.405 |
Method: | Least Squares | F-statistic: | 5.760 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0176 |
Time: | 04:43:22 | Log-Likelihood: | -70.253 |
No. Observations: | 15 | AIC: | 146.5 |
Df Residuals: | 12 | BIC: | 148.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 270.2620 | 206.737 | 1.307 | 0.216 | -180.180 720.704 |
C(dose)[T.1] | 44.8520 | 15.775 | 2.843 | 0.015 | 10.482 79.222 |
expression | -21.9064 | 22.296 | -0.983 | 0.345 | -70.485 26.673 |
Omnibus: | 2.033 | Durbin-Watson: | 1.046 |
Prob(Omnibus): | 0.362 | Jarque-Bera (JB): | 1.567 |
Skew: | -0.668 | Prob(JB): | 0.457 |
Kurtosis: | 2.149 | Cond. No. | 254. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:43:22 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.146 |
Model: | OLS | Adj. R-squared: | 0.080 |
Method: | Least Squares | F-statistic: | 2.224 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.160 |
Time: | 04:43:22 | Log-Likelihood: | -74.115 |
No. Observations: | 15 | AIC: | 152.2 |
Df Residuals: | 13 | BIC: | 153.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 456.8323 | 243.679 | 1.875 | 0.083 | -69.603 983.268 |
expression | -39.6758 | 26.602 | -1.491 | 0.160 | -97.146 17.795 |
Omnibus: | 0.636 | Durbin-Watson: | 1.682 |
Prob(Omnibus): | 0.728 | Jarque-Bera (JB): | 0.438 |
Skew: | -0.377 | Prob(JB): | 0.803 |
Kurtosis: | 2.638 | Cond. No. | 241. |